High Performance Earthquake Simulation at the University at Buffalo

UB Node of NEES

Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, Michael Constantinou University at Buffalo

> Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, and Michael Constantinou Department of Civil, Structural, and Environmental Engineering University at Buffalo

Acknowledgements

- National Science Foundation
 - Dr. Joy Pauschke
 - Dr. Galip Ulsoy
 - Dr. Priscilla Nelson
- State of New York
- University at Buffalo
 - Dean Mark Karwan
- MTS
 - Dr. Omar Rood
 - Mr. Jeff Lundbeck

Major Components of UB-NEES

- New laboratory
- New hydraulic power supply
- New 6 DOF earthquake simulators (2)
- New dynamic actuators (3)
- New high capacity static actuators (2)
- New testing capabilities
 - One of the most versatile large scale earthquake engineering facilities

Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, and Michael Constantinou Department of Civil, Structural, and Environmental Engineering University at Buffalo

Building and Equipment Summary

- Building expansion
 - 1200 m²
- Strong floor
 - 320 m²
- Reaction walls
 - 180 m²
- Reaction mass: 10,000 T
- 6 dof simulators (2)
- 100 T dynamic actuators
 (3)
- 200 T static actuators (2)

- Hydraulic power supply
 - 6050 lpm
- Controllers
- Video recording network
- Data acquisition network
- LAN for experimentation, data processing and simulation

Hydraulic Power Supply

- Four hydraulic pumps of 700 lpm each
- Surge tank and 14 no. 190 litre accumulators
- Continuous supply of 6050 lpm for 30 seconds of seismic motion
- 6050 lpm of main distribution line

Simulator Details

- Platform: 3.6 m x 3.6 m
- Platform weight: 8 T
- Maximum stroke
 - X, Y = 150 mm
 - Z = 75 mm
- Maximum velocity
 - X, Y = 1250 mm/s
 - Z = 500 mm/s
- Maximum acceleration
 - X, Y = 1.15 g
 - Z = 1.15 g

- Degrees of freedom: 6
- Maximum specimen weight:
 - 20 T nominal
 - 50 T maximum
- OTM capacity: 46 T-m
- Off-center loading moment: 15 T-m
- Working frequency range: 0.1 to 50Hz

Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, and Michael Constantinou Department of Civil, Structural, and Environmental Engineering University at Buffalo

Simulator Details

- Simulators are relocatable in a trench
 - Place together
 - 40 T nominal
 - 100 T maximum
 - Place 30 m apart
 - Test large-span bridge structures
 - Utilize adjacent strong wall for hybrid testing

Actuators

- Dynamic actuators (3)
 - 100 T tons
 - Dual 400 1500 lpm servovalves
 - 500 mm stroke
- Static actuators (2)
 - 200 T
 - 57 lpm servovalves
 - 500 mm stroke

Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, and Michael Constantinou Department of Civil, Structural, and Environmental Engineering University at Buffalo

Seismic Testing Capabilities • Earthquake simulator testing • Effective force method (a) • Pseudo-dynamic testing (b) • Real-time dynamic hybrid testing (c) Andrew Whittaker, Andrei Reinhorn, Michel Bruneau, and Michael Constantinou Department of Civil, Structural, and Environmental Engineering University at Buffalo

Closing Remarks

- NEES and NSF
 - The next-generation infrastructure for earthquake engineering research
- UB node of NEES
 - Expands national capabilities in earthquake engineering research
 - Complete and on-line in September 2004
 - Faculty are eager to see substantial use of UB-NEES by US and international research teams post September 2004

