REAL-TIME DYNAMIC HYBRID TESTING OF STRUCTURAL SYSTEMS

Mettupalayam V. SIVASELVAN PhD
Project Engineer, G. E. Brown Network for Earthq. Eng. Simulation (NEES)

Andrei REINHORN* PhD, PE
Clifford C. Furnas Professor

Zach LIANG, PhD
Project Engineer, G. E. Brown Network for Earthq. Eng. Simulation (NEES)

Xiaoyun Shao, PhD Candidate
Project Engineer, G. E. Brown Network for Earthq. Eng. Simulation (NEES)

Department of Civil, Structural and Environmental Engineering
University at Buffalo

* Presenting Author
Outline

- Objective of Testing
- Feasibility issues
- Implementations
- Possible Applications
- Remarks

Real-Time Hybrid Seismic Testing System
(Substructure Dynamic Testing)
Real-time dynamic hybrid testing

- Shake Table
- Laminar Soil Box
- Foundation

Well understood

Focus of interest

Structural Actuator
Real-time dynamic hybrid testing

- Shake Table
- Laminar Soil Box
- Foundation
- Structural Actuator
- Distributed mass
- Acceleration input: Table introduces inertia forces
- Response Feedback

Has to operate in Force Control
Real-time dynamic hybrid testing

Combined use of earthquake simulators, actuators and computational engines for simulation
Objectives of Hybrid Testing

- Allow testing of full size structures or substructures
- Allow to test strain rate effects
- Allow to develop inertial effects in distributed mass systems
- Test integrally the computational tools as well as the physical specimens
- Ultimately allow production of computational tools validated by experiments
Relation to state-of-the-art

- Sub-structured pseudo-dynamic testing (Mahin, Shing, Nakashima)
 - Mass simulated computationally
 - Rate-dependent effects simulated predominantly computationally
 - Algorithms and error analysis well-researched
 - Sub-structuring displacement-based (interface displacements applied to specimen)

- Effective-force method (Mahin, Dimig et al.)
 - Ground acceleration applied as equivalent forces using actuators
 - Actuator-structure interaction significant problem (French et al.)

- Shake-table testing (Reinhorn et al.)
 - Table-structure interaction addressed using iterative and adaptive techniques (MTS systems)
Substructure Testing – Unified Approach

Shake table acceleration, $\ddot{u}_t = \alpha_1(s)\ddot{u}_1 - \alpha_3(s)\frac{k_3}{m_2}(x_1 - x_2)$

Actuator Force, $F_a = -\left[1 - \alpha_1(s)\right]m_2\ddot{u}_1 + \left[1 - \alpha_3(s)\right]k_3(x_1 - x_2)$
Unified approach to substructure testing

- If $\alpha_1(s) \neq 0$ and $\alpha_3(s) \neq 0$, then the control requires a shake table and an actuator to implement the substructure testing.

- If $\alpha_1(s) = 0$ and $\alpha_3(s) = 0$, then the controller require just an actuator to implement the substructure testing as pseudo-dynamic testing:

Note:

- In pseudo-dynamic testing, inertia effects are computed while in RTDHT are produced by shaking
- In dynamic hybrid testing ($\alpha_1(s) \neq 0$ or $\alpha_3(s) \neq 0$), the actuator should operate in force control only
Real-time dynamic hybrid testing (RTDHT)

- Unique features
 - Mass in the physical system
 - Distributed inertia and rate-dependent effects
 - Shake-table operated as acceleration device – actuators in dynamic force control
 - Sub-structuring force-based (interface forces applied to specimen)
 - Dynamic test (has to be real-time)

- Challenges
 - Dynamic force control
 - Actuator/table – structure interaction
 - Numerical algorithms – stability, error propagation
 - Flexible hardware/software architecture permitting different other types of tests (eg: pseudo dynamic test with shake-table as a displacement device)
Force control – challenging problem

- Hydraulic actuator fitted with flow-regulating servo-valve
 - Inherently a velocity source
 - Designed to be mechanically stiff for good position control
 - Friction, stick-slip, breakaway forces on seals, backlash cause force noise
 - Stiff oil columns make force control very sensitive to control parameters often leading to instability
Innovative scheme for force control using “Series Elasticity Actuator Approach”

- Target Force
- Command Signal
- Actuator in Displacement Control
- Series Spring, K_{LC}
- Structure
- Compensator
- Structure Displacement
- Measured Force

$1 / K_{LC}$
Small-scale test setup

- Load Cell
- Series Spring
- Structure
- Actuator
- Structure Disp. Transducer
Actuator displacement control

- Tuned very well in displacement control
- Standard PIDF controller

- Time-delay = 5.6 ms
Time-delay effect on force transfer function

Need predictive capability in compensator
Control scheme with Smith predictor compensator

Smith Predictive Compensator

\[T = e^{-st} \]

Model of Structure-Spring System

\[\frac{1}{\hat{m}s^2 + \hat{c}s + \hat{k} + \hat{K}_{LC}} \]

Corrective Displacement

Predictive Displacement

Delay Model
Force transfer function with predictive compensation

![Graph showing force transfer function with and without compensation](image)
Hybrid Controller Implementation (UB-NEES)

- Flexible architecture using parallel processing (see right side of diagram below)
- Delays of less than 5 milliseconds.
Pilot Test of Real Time Dynamic Hybrid Technique
Pilot Test of Real Time Dynamic Hybrid Technique
Implementation of RTDHT
Substructure response

Second floor
- Calculated

First floor

Hybrid test Analytical
Hybrid Testing of Electrical Systems

Transformer

Bushing

Bushing Interface

Reduced-Model Representation

Ground Motion

Bushing

Bushing Interface

Dynamically condensed model to simulate the transformer with bushing interface

Shake table

13 WCEE, August 2004
Fast-MOST FAST-PSEUDO-DYNAMIC-HYBRID

- 6-span bridge model – FAST-PSEUDO-DYNAMIC-HYBRID - test in progress
 - Span and one column are numerical models
 - Other 4 columns are experimental models
 - Achieved speeds of 100 milliseconds (based on UB-NEES developments)

Computational Sites:
UIUC/NCSA

Experimental Sites:
Berkeley
Boulder
UIUC
Buffalo
Lehigh

Slide courtesy of
Gilberto Mosqueda
Remarks – Experimental Approaches

- Full scale (or large scale) testing of assemblies can be implemented only as substructure testing in the NEES Collaboratory
- Advanced analytical techniques require validation
- Hybrid testing *may* provide the framework for both of the above
- The current new technology allows for distributed hybrid dynamic testing – although many issues need further solutions
- New experimentation and computing infrastructure in US and networking of such infrastructure allowed the advances necessary for such testing
Thank you!

Questions?