MTS

STEX Manual

Job No. US1.17858.EQT
for University at Buffalo (SUNY)

October 13, 2004
Table of Contents

Section 1 Introduction ...1-1

1.1 STEX Software Capabilities ...1-2
1.1.1 Group Options ...1-3
1.1.2 Test Options ...1-3
1.1.3 Analysis Options ...1-4
1.1.4 Hardware Options ..1-4
1.1.5 Help Options ...1-4
1.2 Defining and Executing a Test ..1-5
1.2.1 Acquisition Only Test ...1-5
1.2.2 Model Measurement Test ..1-6
1.2.3 Uncompensated Earthquake Testing1-7
1.2.4 Compensated Earthquake Testing1-8

2.0 STEX Operation

2.1 Starting the STEX Software ...2-1
2.2 Quitting the STEX Software ...2-1
2.3 STEX Main Dialog ...2-2
 2.3.1 Pulldown Menu Options ..2-3
 2.3.2 Tests ...2-3
 2.3.3 Analysis Results ..2-4
 2.3.4 STEX On-line Help ...2-5
2.4 Viewing Test and Result ...2-6
 2.4.1 Viewing Test Parameters ...2-6
 2.4.1.1 Generating a Test Report ...2-7
 2.4.2 Viewing Results Parameters ..2-8
 2.4.2.1 Time History and Real Valued Spectra Statistics Dialog 2-8
 2.4.2.2 Random Time History Statistics Dialog2-9
 2.4.2.3 Complex Spectrum Statistics Dialog2-10
 2.4.2.4 Response Spectrum Statistics Dialog2-11
 2.4.2.5 Vector Statistics Dialog ..2-12
 2.4.2.6 Matrix Statistics Dialog ...2-14
 2.4.2.7 Model Statistics Dialog ...2-15
2.5 Using the Plotting Option ..2-16
 2.5.1 Plot Setup Dialog ...2-17
2.6 Using the Printing Option ...2-19
2.7 Using the Select Option ..2-20
3.0 Test Groups

3.1 Group Menu Options..3-1
3.2 Opening an Existing Group..3-2
3.3 Creating a New Group..3-3
3.4 Creating a Group Archive File..3-4
3.5 Restoring a Group Archive File..3-5
3.6 Deleting an Existing Group...3-6
3.7 Quitting the Stex Application...3-6

Section 4 Tests..4-1

4.1 Test Types..4-1
4.2 Test Menu Options...4-2
4.3 Configuring New Tests..4-3
4.3.1 Test Setup Dialogs..4-7
4.3.1.1 Acquisition Only Test Setup Dialog..4-7
4.3.1.2 Model Measurement Test Setup Dialog..4-7
4.3.1.3 Time History and Compensated Time History Test Setup Dialog..................4-9
4.3.1.3.1 Compensated Test Loopback...4-11
4.4 Executing Test..4-12
4.4.1 Test Execution - No Data Acquisition Hardware..4-12
4.4.2 Test Execution - Data Acquisition Hardware...4-14
4.4.2.1 Reconciliation Dialog...4-14
4.4.2.1.1 Control DOF Channel Discrepancy...4-14
4.4.2.1.2 Specimen Channel Discrepancy...4-15
4.4.2.1.2.1 Specimen Channel Discrepancy Dialog - Pacific Instruments..............4-15
4.4.2.1.2.2 Specimen Channel Discrepancy Dialog - MTS 498/493.........................4-17
4.4.2.2 Channels to Monitor Dialog..4-18
4.4.2.3 Pretest Checks Dialog..4-19
4.4.2.4 Test Excitation Dialog...4-22
4.4.3 Compensated Test Dialogs..4-24
4.4.4 Channel Setup Dialogs..4-28
4.4.4.1 Channel Setup - Pacific Instruments Data Acquisition................................4-28
4.4.4.2 Channel Setup - MTS 498/493 Data Acquisition ...4-30
4.5 Viewing Test Parameter...4-35
4.6 Deleting a Test..4-36

5.0 Analysis Results

5.1 User vs. System Results..5-1
5.2 Result Types..5-2
5.2.1 Time Histories and Vectors..5-2
5.2.2 Spectra...5-2
5.2.3 Response Spectra..5-3
5.2.4 Matrices And Models...5-3
5.3 Analysis Menu Options...5-4
<table>
<thead>
<tr>
<th>5.4</th>
<th>Creating a New Result ...</th>
<th>5-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1</td>
<td>Creating Time Histories ..</td>
<td>5-5</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>Addition and Scaling of Time Histories</td>
<td>5-6</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>Multiplying Time Histories ..</td>
<td>5-7</td>
</tr>
<tr>
<td>5.4.1.3</td>
<td>Time History Differential Operations</td>
<td>5-8</td>
</tr>
<tr>
<td>5.4.1.4</td>
<td>Inverse Shock Time History Synthesis</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4.1.5</td>
<td>Inverse FFT of Spectrum ..</td>
<td>5-12</td>
</tr>
<tr>
<td>5.4.1.6</td>
<td>Random Time History ..</td>
<td>5-13</td>
</tr>
<tr>
<td>5.4.1.7</td>
<td>Filtering a Time History ..</td>
<td>5-14</td>
</tr>
<tr>
<td>5.4.1.8</td>
<td>Creating a Sine Sweep ...</td>
<td>5-15</td>
</tr>
<tr>
<td>5.4.1.9</td>
<td>Tapering Time Histories ...</td>
<td>5-16</td>
</tr>
<tr>
<td>5.4.1.10</td>
<td>Concatenation of Time Histories ...</td>
<td>5-17</td>
</tr>
<tr>
<td>5.4.1.11</td>
<td>Harmonic Distortion ...</td>
<td>5-18</td>
</tr>
<tr>
<td>5.4.1.12</td>
<td>Kinematic Conversion ...</td>
<td>5-19</td>
</tr>
<tr>
<td>5.4.1.13</td>
<td>Correlation ..</td>
<td>5-20</td>
</tr>
<tr>
<td>5.4.1.14</td>
<td>Accel Conversion ..</td>
<td>5-21</td>
</tr>
<tr>
<td>5.4.1.15</td>
<td>Sine Waves ..</td>
<td>5-22</td>
</tr>
<tr>
<td>5.4.1.16</td>
<td>Adjust Time Base ...</td>
<td>5-23</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Creating Spectra ...</td>
<td>5-24</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Addition and Scaling of Existing Spectra</td>
<td>5-25</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Multiplying Spectra ..</td>
<td>5-26</td>
</tr>
<tr>
<td>5.4.3.3</td>
<td>Spectra Differential Operations ...</td>
<td>5-27</td>
</tr>
<tr>
<td>5.4.3.4</td>
<td>Smoothing Spectra ..</td>
<td>5-28</td>
</tr>
<tr>
<td>5.4.3.5</td>
<td>Shock Response Calculation ..</td>
<td>5-29</td>
</tr>
<tr>
<td>5.4.3.6</td>
<td>FFT of an Existing Time History ..</td>
<td>5-30</td>
</tr>
<tr>
<td>5.4.3.7</td>
<td>Spectral Analysis of Existing Time Histories</td>
<td>5-31</td>
</tr>
<tr>
<td>5.4.3.8</td>
<td>Designing a Digital Filter ..</td>
<td>5-32</td>
</tr>
<tr>
<td>5.5</td>
<td>Editing Existing User Results ...</td>
<td>5-33</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Editing Time History and Real Spectrum</td>
<td>5-34</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Editing Complex Spectrum ...</td>
<td>5-35</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Editing a Shock Response ..</td>
<td>5-36</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Editing a Model ..</td>
<td>5-37</td>
</tr>
<tr>
<td>5.6</td>
<td>Deleting Results ..</td>
<td>5-37</td>
</tr>
<tr>
<td>5.7</td>
<td>Data Import and Export ..</td>
<td>5-38</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Data Import ..</td>
<td>5-38</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Copying Results From Another Group ..</td>
<td>5-40</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Data Export ...</td>
<td>5-41</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Exporting All Results ...</td>
<td>5-41</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Exporting Multiple Results ..</td>
<td>5-42</td>
</tr>
<tr>
<td>5.8</td>
<td>Creating Shape Results ...</td>
<td>5-43</td>
</tr>
<tr>
<td>5.9</td>
<td>Creating a Model ...</td>
<td>5-45</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Editing the Inverse Transfer Function ...</td>
<td>5-46</td>
</tr>
</tbody>
</table>
Appendix A Naming Conventions

Appendix B Random Signal Architecture

Appendix C Model Creation

Appendix D File Formats

Appendix E Result Units
Section 1

Introduction

1.1 STEX Software Capabilities
1.1.1 Group Options
1.1.2 Test Options
1.1.3 Analysis Options
1.1.4 Hardware Options
1.1.5 Help Options

1.2 Defining and Executing a Test
1.2.1 Acquisition Only Test
1.2.2 Model Measurement Test
1.2.3 Uncompensated Earthquake Testing
1.2.4 Compensated Earthquake Testing
Section 1
Introduction

Overview

MTS seismic test execution (STEX) software provides the setup, program definition, test execution and analysis capabilities required to conduct seismic tests using MTS seismic test systems.

This manual describes how to use the STEX software to define and execute compensated or uncompensated seismic tests on MTS seismic test systems. It is designed to provide both the experienced and first-time operator with information about the use of STEX software.

Before Using this Manual

This manual does not describe standard Windows NT operating procedures. Before using the STEX software, you should become familiar with your Windows NT operating system and the procedures related to using the menus and controls. Refer to the Windows NT documentation provided with your system.

System Introduction

Seismic test systems are designed by MTS Systems Corporation to investigate the characteristics of specimens undergoing simulated seismic events. This simulation is controlled through MTS Seismic Test Execution (STEX) software.

The following figure identifies the configuration of a typical test system.

Figure 1-1. Test System Configuration
As illustrated, the major test system components are hydraulic actuators and electronic consoles. During a test, the actuators are driven by their electronically-controlled servovalves to apply the desired specimen displacement and test forces. Measurements are made of the actuator motion and specimen response.

The STEX software resides on an IBM compatible PC workstation and provides the electronic program, or drive, signal that is sent to the control console components, where servovalve control signals are generated. It also provides achieved motion and specimen response data acquisition.

The function and operation of the hardware components contained in the test system are described in the system Operation and Reference Manuals. This manual focuses on STEX software operation.

1.1 STEX Software Capabilities

STEX software provides control of multi-axial table motion, electronic storage of test definitions and test results, and analysis of desired motion, achieved motion, and specimen response data.

STEX software is used to create tests and results. Available test types are Time History, Compensated Time History, Model Measurement, and Acquisition Only. Results consist of time histories, spectra, response spectra and models.

The MTS Main Dialog appears when you start the STEX application and displays the currently active group of tests and results. The STEX functions are accessed by using the MTS pulldown menu options located on the STEX main dialog. The following table identifies the five pulldown menu options.

Table 1-1. MTS Main Dialog Pulldown Menu Options

<table>
<thead>
<tr>
<th>Option Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP</td>
<td>Use to open, create, or delete a test group. Can also create and restore group archive files.</td>
</tr>
<tr>
<td>TEST</td>
<td>Use to create, execute, or delete a test from the group. Can also view the state of a test before or after execution.</td>
</tr>
<tr>
<td>ANALYSIS</td>
<td>Use to create, edit, delete, or export a result.</td>
</tr>
<tr>
<td>HARDWARE</td>
<td>Use to perform hardware related activities such as setting up hardware channels and filters.</td>
</tr>
<tr>
<td>HELP</td>
<td>Use to access the STEX on-line help capability.</td>
</tr>
</tbody>
</table>
1.1.1 Group Options

The Group options allow you to create, open, delete, and archive test groups.

The test group represents the highest level of data organization for a test database. A test group contains test records and analysis results. All tests and results within a group must share the same sample rate (time histories) or Nyquist frequency (spectra).

1.1.2 Test Options

The Test options allow you to define and execute uncompensated and compensated earthquake tests. You can also execute model measurement and acquisition only tests. Before test execution, this option allows you to check the limits of and scale the drive signal. When a test has been executed and data stored, you can perform test motion analysis on achieved and specimen response test data using the Analysis options.

Acquisition Only Tests
You define acquisition only tests by selecting specimen channels and acquisition duration.

Model Measurement Tests
You define model measurement tests using random shaping functions.

Uncompensated Earthquake Tests
You define uncompensated earthquake tests using time histories.

Compensated Earthquake Tests
A compensated earthquake test uses a drive signal that has been modified to allow for system dynamics. You define these tests using time histories and a system model.

Further drive signal adjustment can be made on a compensated earthquake test through a series of actual test iterations. In these iterations, STEX measures the difference between desired motion and achieved motion and allows you to redefine, or "tune," the drive signal.
1.1.3 **Analysis Options**

The Analysis options allow you to create, edit and delete results. You can also create model elements.

You can create time histories that define the drive signal (or target) for a test. You can create different time histories for each control axis that is to be active in the test.

Analysis options can be used to analyze specimen response and achieved motion test data. You can also perform shock spectrum analysis, and create new results by performing operations on existing results.

You can create spectra that define the spectral content for random time history generation used in model measurement tests.

You may import and export data using files external to the STEX database. Imported files are typically earthquake time histories defined in text files residing on the STEX workstation. Test results may be exported and analyzed on a remote workstation.

You may copy test results between test groups within the STEX database.

You may load Plot files that describe the various settings of a detailed data plot. STEX has a feature-rich plot setup environment that allows you to configure a customized representation of test data. Once a plot has been configured, the setup may be saved to a Plot file and reloaded for viewing at a later date.

1.1.4 **Hardware Options**

The Hardware options allow you to perform functions related to the hardware, such as setting up hardware channels. These options are dependent upon the hardware configuration and will vary with each system.

1.1.5 **Help Options**

The Help options allow you to invoke the STEX on-line help capability, which can be used to obtain information about a specific STEX related topic.
1.2 Defining and Executing a Test

As described in the preceding subsections, the options on the pulldown menus perform unique functions that collectively provide test configuration and execution for four types of tests:

- acquisition only test
- model measurement tests
- uncompensated earthquake testing
- compensated earthquake testing

The following subsections describe the processes used for each type of test definition and execution.

1.2.1 Acquisition Only Test

You define an acquisition only test by selecting the desired specimen channels and the duration. There are three basic steps to complete for definition and execution of an acquisition only test.

![Flowchart](image)

Figure 1-2. Acquisition Only Test Execution Flowchart

Each of the steps in Figure 1-2 is more fully described in the sections describing the option identified on the figure.
1.2.2 Model Measurement Test

You define model measurement tests based on spectral content described in a spectrum result. A test defined using random motion is used to generate a system model for compensated testing. There are five basic steps to complete for definition and execution of a model measurement test.

Figure 1-3. Model Measurement Test Execution Flowchart

After test execution, you can use the New Model option to create a model from the results of a model measurement test.

Each of the steps in Figure 1-3 is more fully described in the sections describing the option identified on the figure.
1.2.3 Uncompensated Earthquake Testing

You define an uncompensated earthquake test using time histories. There are five basic steps to complete for definition and execution of an uncompensated earthquake test.

Figure 1-4. Uncompensated Earthquake Test Execution Flowchart

After test execution, you can use the Analysis options to analyze specimen response and achieved motion test data.

Each of the steps in Figure 1-4 is more fully described in the sections describing the option identified on the figure.
1.2.4 Compensated Earthquake Testing

You define these tests using target time histories and a control system model. There are nine basic steps to complete for definition and execution of a compensated earthquake test.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Use the Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Determine the control DOFs for the test</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Create a target time history result for each DOF</td>
<td>Analysis Option</td>
</tr>
<tr>
<td>Step 3</td>
<td>Create a system model from data achieved during a model measurement test</td>
<td>"New Model" Test Option</td>
</tr>
<tr>
<td>Step 4</td>
<td>Define the test by specifying the DOFs and model</td>
<td>"New" Test Option</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specify a target time history result for each DOF</td>
<td>"Specify Target Time Histories" dialog</td>
</tr>
<tr>
<td>Step 6</td>
<td>Execute the test</td>
<td>"Execute" Test Option</td>
</tr>
</tbody>
</table>

(continued on next page)
Step 7.
Tune the drive signal by comparing achieved and desired motion signals, and then correcting the signal

Use the "Execute" Test Option

↓

Step 8.
Execute the test

Use the "Execute" Test Option

↓

Step 9.
Repeat steps 7 and 8 as desired

Use the "Execute" Test Option

Figure 1-5. Compensated Earthquake Test Execution Flowchart

After test execution, you can use Analysis Options to analyze the specimen response and achieved motion data.

Each of the steps in Figure 1-5 is more fully described in the sections describing the option identified on the figure.
Section 2 STEX Operation

2.1 Starting the STEX Software ... 2-1
2.2 Quitting the STEX Software ... 2-1
2.3 STEX Main Dialog ... 2-2
 2.3.1 Pulldown Menu Options ... 2-3
 2.3.2 Tests ... 2-3
 2.3.3 Analysis Results ... 2-4
 2.3.4 STEX On-line Help ... 2-5
2.4 Viewing Test and Result .. 2-6
 2.4.1 Viewing Test Parameters ... 2-6
 2.4.1.1 Generating a Test Report .. 2-7
 2.4.2 Viewing Results Parameters ... 2-8
 2.4.2.1 Time History and Real Valued Spectra Statistics Dialog 2-8
 2.4.2.2 Random Time History Statistics Dialog 2-9
 2.4.2.3 Complex Spectrum Statistics Dialog 2-10
 2.4.2.4 Response Spectrum Statistics Dialog 2-11
 2.4.2.5 Vector Statistics Dialog .. 2-12
 2.4.2.6 Matrix Statistics Dialog ... 2-14
 2.4.2.7 Model Statistics Dialog .. 2-15
 2.5 Using the Plotting Option ... 2-16
 2.5.1 Plot Setup Dialog ... 2-17
2.6 Using the Printing Option ... 2-19
2.7 Using the Select Option .. 2-20
Section 2
STEX Operation

Overview
This section describes some basic information that you need to know in order to begin operating the MTS STEX software, including:

- Starting the STEX software application
- Quitting the STEX software application
- Using the STEX software including:
 - using the STEX Main Dialog
 - selecting menu options
 - test and result definitions
 - displaying test and result parameters
 - using the plot dialog
 - using the Select button
- Using STEX On-line Help

This manual does not describe standard Windows NT procedures. Before using the STEX software, you should be familiar with the information provided in the Windows NT User's Guide.

2.1 Starting the STEX Software

Use the following procedure to start the STEX software application:

- start the computer system
- log in
- double click on the STEX icon

The STEX application will open with the STEX Main Dialog.

2.2 Quitting the STEX Software

To exit the STEX application, select “EXIT” under the Group pulldown menu located on the Main Dialog.

You may also exit the STEX application, like most Windows applications, by clicking on the \(\sqrt{ } \) button on the right end of the main dialog title bar, depressing the “Escape Key”, or selecting “Close” from the system dialog. The system dialog is activated as a pulldown menu on the left end of the title bar.
2.3 STEX Main Dialog

The STEX main dialog is opened automatically when you start the STEX application.

The STEX main dialog provides information relating to the currently active test group. A test group is the highest level of data organization for a test database. Refer to Section 3, Test Groups, for more information relating to test groups. The main dialog displays the name of the active group and the following group parameters; Nyquist frequency, sample rate, and sample resolution. Two scrolling lists display the tests and analysis results contained by the active group. Also, the number of tests and results are displayed below the test list box. Pulldown menus provide access to group, test, and analysis functions, as well as hardware and help options.

A button exists that toggles between “Hide System Results” and “Show System Results”. System results are generated automatically by STEX during some operations. User results are explicitly created by the user through the Analysis menu. Refer to Section 2.3.3.

The following subsections further describe the functionality of the main dialog.
2.3.1 Pulldown Menu Options

The STEX main dialog has five pulldown menus which open other dialogs when selected.

- **Analysis**
 - New
 - Edit
 - Delete
 - Rename

- **Group**
 - Open
 - New
 - Create Archive
 - Restore Archive
 - Delete Group
 - Exit

- **Test**
 - New Test
 - Delete
 - Rename
 - Copy

- **Hardware**
 - Channel Setup
 - Set Filters

- **Help**
 - Find Help

The Group pulldown menu allows you to setup and manipulate test groups. Refer to Section 3, Test Groups.

The Test pulldown menu allows you to configure, execute and view tests. Refer to Section 4, Tests.

The Analysis pulldown group allows you to create and edit analysis results including time histories, spectra and models. Refer to Section 5, Analysis Results.

The Hardware pulldown group allows you to setup hardware related functions. Refer to Section 4.4.4, Channel Setup.

The Help pulldown group allows you to invoke the STEX On-line Help. Refer to Section 2.3.4, STEX On-line Help.

2.3.2 Tests

Tests are created using the Test pulldown menu and are listed in the Test list box on the Main Dialog. When a test is created, it must be given a unique name.
Test types are:

- Acquisition only (no drive motion)
- Model Measurement (for creating models)
- Time History (time history drive for each DOF)
- Compensated Time History (uses model for compensation)

An acquisition only test is defined by a set of degrees of freedom (DOFs) and a set of specimen acquisition channels. The response channels of the DOFs are sampled along with the specimen acquisition channels for the duration of the test.

The model measurement, time history, and compensated time history tests provide drive signal capability along with the DOF and specimen acquisition parameters.

A time history test includes drive signals for each control DOF. Adding compensation to a time history test involves using a model to adjust the drive signal based on experience gained during a model measurement test.

A model measurement test uses shaped random noise to drive each DOF independently (i.e. consecutively). The drive signals are specially designed to provide accurate model information so that compensation may be used to improve system response and drive correlation.

Note that time histories associated with a test (e.g. drive and achieved signals) are listed in the result list box; the result names are derived from the test name.

When you double click on a test in the test list box, a test viewing dialog will open, allowing you to review the test parameters. Refer to Section 2.4.1.

When you double click on a result in the result list, a statistic dialog will open, allowing you to review the result parameters. Refer to Section 2.4.2.

2.3.3 Analysis Results

Analysis results are listed in the Results list box on the Main Dialog. There are user results and system results. Each result has a unique name.

User results are created by the user (i.e. a time history, spectrum or a model) using options on the Analysis pulldown menu. User result names cannot include the brackets [and].

System results are created by STEX (i.e. time histories of a test or elements of a model). When the system creates a result, it inserts a special description at the beginning of the result name, enclosed in brackets:

```
Model Measurement Test [RANDOM:Lat]
```

The button "Hide (Show) System Results" located on the Main Dialog will remove (or include) the system results from the list box, depending on the current state. This can be helpful when there is a large number of system results.
Results are listed by type on the Main Dialog:

- Time Histories (including Vectors)
- Spectra
- Response Spectra
- Models (including Matrices)

Results include functions of time (time histories) and functions of frequency (spectra) but also include vectors, matrices, and models.

A vector is a group of one or more time history results. For example, the set of achieved signals from a test consists of several individual time histories grouped into a single vector. A vector can only be created by the system.

A matrix is a two-dimensional grouping of spectra or time histories. For example, the impulse response function of a model is a matrix of time histories. A matrix can only be created by the system.

A model result consists of several matrices including the transfer function and the expanded inverse transfer function. A model is used by a compensated test to iteratively improve the response of the control system to more closely match the target motion.

When you double click on a result in the result list box, an appropriate statistic dialog will open, allowing you to view and plot result parameters. Each result type provides a uniquely formatted statistic dialog presenting information derived from the result content. Refer to Section 2.4.2, Displaying Result Parameters.

2.3.4 STEX On-line Help

STEX On-line help may be initiated by one of the following techniques:

- The Help menu on the main dialog
- Pressing F1 within any dialog

The help menu may be used to select “Find Help”; this invokes the Windows Help application.

Pressing F1 activates the “Context Sensitive Help”. The Windows Help application will appear with the topic set to describe the current STEX dialog. If a menu item is highlighted on the main dialog, the help topic will describe the item.
2.4 Viewing Test and Result

You can view test and result parameters by double clicking on the desired test or result in the appropriate list box on the main dialog. A test viewing dialog or result statistic dialog will appear, displaying the parameters. You can also open the test-viewing dialog by highlighting the test and selecting "View" from the Test pulldown menu.

2.4.1 Viewing Test Parameters

When you double click on a test in the test list box or highlight the test and select "View" from the Test pulldown menu, the View Test dialog will appear.

When a test name in the test list is double-clicked for viewing, STEX checks to see if test setup was completed. If not completed, a message box appears before the test-viewing dialog asking if setup should continue. If you choose not to continue test setup, the View Test dialog appears. Otherwise, setup continues (loopback step, for example) and then the View Test dialog appears.
This dialog contains the following information:

- Test name and type
- Test creation and modification dates
- Test duration (in seconds)
- Model name (for compensated tests)
- Target motion vector name
- Desired motion vector name (for compensated tests)
- Specimen motion vector name (if any)
- A list detailing the DOFs controlled by the test, along with mode and full-scale information
- A list of specimen acquisition channels along with identifier and full-scale information

Selecting a button next to one of the vector names (target, achieved, drive, or specimen) will open an appropriate statistics dialog for that vector. Refer to Section 2.4.2.

Selecting the “View Test Log” button will open a View Test Log dialog, allowing you to scroll through the test log.

You may add one or more comment lines to the log by entering text in the edit field and selecting the “Add Line” button.

2.4.1.1 Generating a Test Report

Selecting the “Report” button on the test-viewing dialog will generate a test report in a text file. A filename is specified using the Save As dialog. The test report describes the test including channel information as well as the test log.
2.4.2 Viewing Result Parameters

When you double click on a result in the result list box, an appropriate statistic dialog will open. The statistic dialog may be viewed and exited, or you may plot the results.

Each result type provides a uniquely formatted statistic dialog presenting information derived from the result content. The following subsections describe these statistic dialogs.

2.4.2.1 Time History and Real Valued Spectra Statistics Dialog

When you double click on a time history or real-valued spectrum in the result list on the main dialog, the Results Statistics dialog appears. (refer to Section 2.4.2.2 regarding random time histories.)

The dialog displays the following information:

- Result name
- Result type
- Creation and modification dates and times
- Permanent storage information
- Units for both axes
- Span information with count and resolution
- Description - automatically created for USER results only
- Minimum and maximum result values
- Mean, mean square, RMS, standard deviation, and variance values
Pressing the “Plot” button on the statistic dialog will open the plotting dialog. Refer to Section 2.5.

Pressing the “ASD” button results in a plotting dialog that displays the frequency content of the time history.

2.4.2.2 Random Time History Statistics Dialog

When you double click on a random time history in the result list on the main dialog, the Random Function Statistics dialog appears.

![Random Function Statistics dialog]

The dialog displays the following information:

- Result name
- Result type
- Creation date and time
- Permanent storage information
- Units for both axes
- Span information with count and resolution
- Degree of Freedom using this random time history
- Index and count of random signals in the vector
- Frame size and count (total and independents/DOF)
- Three sigma level
- ASD used to create the random time history
- Minimum and maximum result values
- Mean, mean square, RMS, standard deviation, and variance values
Refer to Appendix B for random signal information.

Pressing the “Plot” button on the statistic dialog will open the plotting dialog. Refer to Section 2.5.

Pressing the “ASD” button results in a plotting dialog that displays the frequency content of the time history.

2.4.2.3 Complex Spectrum Statistics Dialog

When you double click on a complex spectrum in the result list on the Main Dialog, the Complex Function Statistics dialog appears.

The dialog displays the following information:

- Result name
- Result type
- Creation date and time
- Permanent storage information
- Units for both axes
- Span information with count and resolution
- Minimum and maximum amplitude values
- Mean amplitude
- Description - automatically created for USER results only
- Resonance and damping (computed)

Pressing the “Plot” button on the statistic dialog will open the plotting dialog. Refer to Section 2.5.
2.4.2.4 Response Spectrum Statistics Dialog

When you double click on a shock response spectrum in the result list on the main dialog, the **Shock Spectrum Statistics** dialog appears.

The dialog displays the following information:

- Result name
- Result type
- Creation and modification dates and times
- Permanent storage information
- Units for both axes
- Span information with count and resolution
- Description - automatically created for USER results only
- Minimum and maximum amplitude values
- Mean amplitude

Pressing the “Plot” button on the statistic dialog will open the plotting dialog. Refer to Section 2.5.
2.4.2.5 Vector Statistics Dialogs

When you double click on a vector in the result list on the main dialog, the Vector Statistics dialog appears.

![Vector Statistics Dialog Image]

The dialog displays the following information:

- Result name
- Result type
- Creation and modification dates and times
- Permanent storage information
- Span, including channel count
- Channel list with time history element names
Pressing the “Plot” button on the statistic dialog will open the plotting dialog.

Pressing the “Statistics” button opens the Channel Statistics dialog for all the channels. Double clicking on a channel in the channel list will open a Statistics dialog for that channel only.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Units</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>g</td>
<td>-0.253739</td>
<td>0.40714</td>
<td>0.0</td>
<td>0.04162</td>
</tr>
<tr>
<td>Lateral</td>
<td>g</td>
<td>-0.179021</td>
<td>0.25058</td>
<td>0.0</td>
<td>0.03461</td>
</tr>
<tr>
<td>Vertical</td>
<td>g</td>
<td>-0.228294</td>
<td>0.228026</td>
<td>0.0</td>
<td>0.02043</td>
</tr>
<tr>
<td>Roll</td>
<td>g</td>
<td>-0.04372</td>
<td>0.045391</td>
<td>0.0</td>
<td>0.005275</td>
</tr>
<tr>
<td>Pitch</td>
<td>g</td>
<td>-0.044636</td>
<td>0.03641</td>
<td>0.0</td>
<td>0.005126</td>
</tr>
<tr>
<td>Yaw</td>
<td>g</td>
<td>-0.051541</td>
<td>0.057117</td>
<td>0.0</td>
<td>0.010254</td>
</tr>
</tbody>
</table>

This dialog displays the following information for each channel of the vector:

- Channel identifier
- Channel units
- Minimum, maximum, mean, and RMS values for the channel
2.4.2.6 Matrix Statistics Dialog

When you double click on a matrix in the result list on the main dialog, the Matrix Statistics dialog appears.

This dialog displays the following information:

- Result name
- Result type
- Creation date and time
- Permanent storage information
- Span, including matrix dimensions
- List of element names

Pressing the “Plot” button on the statistic dialog will open the plotting dialog.

Double clicking on an element in the element list results in a statistic dialog for that element only.
2.4.2.7 Model Statistics Dialog

When you double click on a model in the result list on the main dialog, the **Model Statistics** dialog appears.

![Model Statistics Dialog Image]

This dialog displays the following information:

- Result name
- Result type
- Creation and modification dates and times
- Permanent storage information
- Span, including matrix dimensions
- Source Test
- List of DOFs
- List of model components available for viewing
- List of compensated tests using the model

Pressing the “Plot” button on the statistic dialog will open the plotting dialog.

Double clicking on a component in the component list results in statistics dialog for that component.
2.5 Using the Plotting Option

Selecting "Plot" on a dialog or double clicking on a component in a list on a statistics dialog will open the STEX Plot dialog.

The STEX Plot dialog provides a default graphical depiction of the parameter selected for plotting.

The following buttons are provided on the top of the dialog:

- Exit (Exit the STEX Plot dialog and return to the statistic dialog)
- Setup (Opens a Setup dialog to manipulate the format of the graphic display. See Section 2.5.1)
- Print (Opens a Print dialog to select a printer for hardcopy)
- Nice (Sets the vertical span to "round" values)
- Max (Sets the vertical span to the extreme values)
- Total (Sets the horizontal span to the result maximum)
- Copy (Copies the plot image to the clipboard)
- Save (Saves the current plot settings to a file for later viewing)

Note that you can use the < and > keys to advance the plot range and the Shift < and > keys to enlarge the plot range.
2.5.1 Plot Setup Dialog

When you select "Setup" on the STEX Plot dialog, the Plot Setup dialog appears. This dialog provides the following items:

- Two editable title fields
- A font selection (small, medium, and large)
- Line widths (for plot trace and grid)
- Complex format (normal, amplitude only, and phase only)
- Graph configuration matrix (identifies the number of different graphs on the plotting dialog, and which of these graphs is currently detailed on the setup dialog); additional rows may be added
- Check boxes along the columns and rows of the graph matrix – cause a new plot dialog displaying the row or column selected.
- Result list (lists the results to be displayed in the graph selected in the configuration matrix); results may be included or removed from the list
- X and Y axis parameters (linear/logarithmic, and spans)

Selecting “All Graphs” causes the associated axis parameters to be rendered to all of the graphs. This behavior is automatic when the originally plotted result was a vector or matrix. In this case, overlay plots are allowed but rows may not be added to the configuration matrix.
The following dialog demonstrates a plotting dialog resulting from a matrix statistic dialog, in this case a three DOF transfer function.

The plot setup dialog associated with this plot dialog is shown below.

Note that the configuration matrix has a three by three section enabled and the upper left element is active. The result list at right, lists the name of the result displayed in the corresponding position on the plotting dialog.
To add graphs to the plotting dialog, select the “Add Row” button. To define the contents of the new row, click “Select” and then “Include” or “Import” to identify the result to be included in the graph.

To edit the contents of the active element of the configuration matrix, use the “Select”, “Include”, “Remove”, and “Import” buttons as appropriate. Note that Import allows plotting of results in a different test group.

To create overlay plots, include multiple results for the same active element.

2.6 Using the Printing Option

This standard Windows dialog allows you to select a printer and printer related parameters. You may create a hardcopy or cancel the operation.
2.7 Using the Select Option

When you press the “Select” button on any of the STEX dialogs, a Result Selection dialog will appear.

This dialog provides a list of all results in the active test group. When you highlight the desired result in the list and select “OK”, the selected name will be inserted into the edit field next to the “Select” button used to invoke the selection dialog. Alternatively, you may type the desired result name into the edit field. Selecting “Statistics” will result in a statistics dialog for the result highlighted in the listbox.

A result type parameter may be selected by the user (this parameter may be preset by the dialog that invoked the selection dialog). When the result type field is changed, the result list is updated to include results that match the selected type. In addition, you may instruct the dialog to list user results, system results, or both.
<table>
<thead>
<tr>
<th>Section 3</th>
<th>Test Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Group Menu Options</td>
</tr>
<tr>
<td>3.2</td>
<td>Opening an Existing Group</td>
</tr>
<tr>
<td>3.3</td>
<td>Creating a New Group</td>
</tr>
<tr>
<td>3.4</td>
<td>Creating a Group Archive File</td>
</tr>
<tr>
<td>3.5</td>
<td>Restoring a Group Archive File</td>
</tr>
<tr>
<td>3.6</td>
<td>Deleting an Existing Group</td>
</tr>
<tr>
<td>3.7</td>
<td>Quitting the Stex Application</td>
</tr>
</tbody>
</table>
Section 3
Test Groups

Overview

The test group is the highest level of data organization for a test database. The group contains test records as well as analysis results (e.g. time histories, spectra, and models). When a group is created, you must specify a group name and sample rate. All time histories within a group must share the same sample rate and all spectra must share the same Nyquist frequency. STEX will automatically modify the group name to add the group sample rate.

Only one test group can be active. The STEX main dialog displays the name of the currently active test group along with the group parameters (Nyquist frequency, sample rate, and resolution). Also, the names of all the tests and results contained in the test group are listed.

Test groups can be created, opened, deleted, and archived using the "Group" pulldown menu located on the STEX main dialog.

3.1 Group Menu Options

The "Group" pulldown menu contains the following options:

- Open (activates an existing test group)
- New (creates a new test group)
- Create Archive (creates an archive file of the current group)
- Restore Archive (restores a group from an archive file)
- Delete Group (destroys the current group)
- Exit (exits the STEX application)

Note that when there is no active group, only "Open", "New", "Exit", and "Restore Archive" options are enabled in the "Group" pulldown menu.
3.2 Opening an Existing Group

When you select "Open" from the Group pulldown menu on the STEX main dialog, the Open Group dialog appears.

This dialog lists the currently defined test groups. To open a test group, either double click on the desired group name in the list or highlight the desired group name and press the "OK" button. The STEX main dialog will reappear, updated to reflect the contents of the selected group.

To sort the groups based on when each was modified, check the Sort By Modification check box.
3.3 Creating a New Group

When you select "New" from the Group pulldown menu on the STEX main dialog, one of the following New Group dialogs appears, depending on the type of data acquisition hardware used with the system.

Discrete List Selection

```
New Group

Name: 
Sample Rate: 100.00 Points Per Second
Sample Interval: 0.01
Nyquist Frequency: 50.0 (Resolution: 0.006104 to 0.155313)

[OK] [Cancel]
```

Edit Field/Update Selection

```
New Group

Name: New Test Group
Sample Rate: 150.0024105 (1 to 2000 pts/sec)
Sample Interval: 0.00364
Nyquist Frequency: 75.301205 (Resolution: 0.008192 to 0.234145)

[Update] [OK] [Cancel]
```

Input the desired Group Name. Select a Sample Rate. If necessary, press Update to Automatically update the sample rate, sample interval, and Nyquist frequency parameters.

Test Group for Specimen XYZ [SR 200.00 Hz]

When you are satisfied with the New Group parameters, press “OK”. The new group is then created and becomes active on the STEX main dialog.
3.4 Creating a Group Archive File

When you select "Create Archive" from the Group pulldown menu on the STEX main dialog, the Windows Save As dialog appears.

This dialog allows you to specify a directory and filename for archiving the current group.

When you press the "OK" button, the entire content of the currently active group is assembled and stored into a single file which may be restored at a later date using the "Restore Archive" option. Refer to Section 3.5.
3.5 Restoring a Group Archive File

When you select "Restore Archive" from the Group pulldown menu on the STEX main dialog, the Windows Open dialog appears.

Select the directory and filename of an existing archived file previously created using the "Create Archive" option. You may choose a new name for the group to override the name stored in the archive file.

When you press the "OK" button, the archived file will be disassembled and a new group created. The restored group will become the currently active group.
3.6 Deleting an Existing Group

When you select "Delete" from the Group pulldown menu on the STEX main dialog, one of the following Delete Verification dialogs will appear.

If the group has not been archived since the last change to the database, the first dialog will appear informing the user. In either case, you must reaffirm or cancel the delete request.

3.7 Quitting the Stex Application

When you select "Exit" from the Group pulldown menu on the STEX main dialog, the STEX application will close.
Section 4

Tests .. 4-1

4.1 Test Types ... 4-1

4.2 Test Menu Options ... 4-2

4.3 Configuring New Tests ..4-3

4.3.1 Test Setup Dialogs ...4-7

4.3.1.1 Acquisition Only Test Setup Dialog ..4-7

4.3.1.2 Model Measurement Test Setup Dialog ...4-7

4.3.1.3 Time History and Compensated Time History Test Setup Dialog4-9

4.3.1.3.1 Compensated Test Loopback ..4-11

4.4 Executing Test .. 4-12

4.4.1 Test Execution - No Data Acquisition Hardware4-12

4.4.2 Test Execution - Data Acquisition Hardware ..4-14

4.4.2.1 Reconciliation Dialog ...4-14

4.4.2.1.1 Control DOF Channel Discrepancy ..4-14

4.4.2.1.2 Specimen Channel Discrepancy ...4-15

4.4.2.1.2.1 Specimen Channel Discrepancy Dialog - Pacific Instruments4-15

4.4.2.1.2.2 Specimen Channel Discrepancy Dialog - MTS 498/4934-17

4.4.2.2 Channels to Monitor Dialog ...4-18

4.4.2.3 Pretest Checks Dialog ...4-19

4.4.4 Compensated Test Dialogs ...4-24

4.4.4.1 Channel Setup Dialogs - Pacific Instruments Data Acquisition4-28

4.4.4.2 Channel Setup - MTS 498/493 Data Acquisition4-30

4.5 Viewing Test Parameter ...4-35

4.6 Deleting a Test ...4-36
Section 4
Tests

Overview

Several test types are available. Test type and system parameters are defined during test configuration. Once configured, the test may be executed and viewed. Tests are created using the Test pulldown menu and are listed in the Test list box on the STEX main dialog. When a test is created, it must be given a unique name.

Since STEX is deployed in laboratories utilizing a wide variety of data acquisition and control system equipment, test options may vary. This chapter is divided into sections describing all of the possible configurations.

4.1 Test Types

Available test types are:

- Acquisition only (no drive motion)
- Model Measurement (for creating models)
- Time History (time history drive for each DOF)
- Compensated Time History (uses model for compensation)

An Acquisition Only test is defined by a set of DOFs and a set of specimen acquisition channels. The response channels of the DOFs are sampled along with the specimen acquisition channels for the duration of the test. There are no drive signals. (This test is only available on systems equipped with a Pacific Instruments data acquisition system.)

A Model Measurement test uses shaped random noise to drive each DOF independently (i.e. consecutively). The drive signals are specially designed to provide accurate model information so that compensation may be used to improve system response and drive correlation.

Time History and Compensated Time History tests have signals defined which drive the control system during a test, along with DOF and specimen acquisition parameters. A time history test includes drive signals for each DOF included for control. Adding compensation to a time history test involves using a model to attempt to remove the dynamic effects of the control system by adjusting the drive signal based on experience gained during a model measurement test.

When you double click on a test in the test list box or highlight the test and choose the "View" option from the Test pulldown menu, a test viewing dialog will open, allowing you to review the test parameters. Refer to Section 4.5, Viewing Test Parameters.
4.2 Test Menu Options

Tests are created, executed, and deleted using the “Test” pull-down menu on the STEX main dialog.

The "Test" pulldown menu contains the following options:

- New Test (configure a new test)
- Delete (delete a test from the current group)
- Rename (rename a test)
- Copy (copy a test)
- Execute (execute a test)
- View (view the state of a test)
- Overlay Target/Achieved (create a plotting dialog with the target and achieved signals in an overlay plot)
- Print (print test signals)
- Retrieve Data (retrieve acquired test data from acquisition data)

During test excitation, acquired data is written to a raw data file. After the test, STEX automatically reads this data file and creates the new ACHIEVED (and SPECIMEN) time histories. If this process is interrupted or cancelled, the time history records are not updated properly. If this should occur, the RETRIEVE DATA option allows the raw data file to be re-read, thereby updating the test signals. Note that since the raw data file is overwritten each time, Retrieve Data is limited to the last executed test.
4.3 Configuring New Tests

When you select "New" from the Test pulldown menu on the STEX main dialog, the Configure Test dialog appears.

![Configure Test Dialog]

This dialog allows you to configure a new test by entering a test name, test type, and a set of controlled degrees of freedom (with control and feedback modes).

Enter the following parameters on this dialog:

1. **Name**: Enter a unique test name, up to 40 characters in length.
2. **Test Type**: Select one of the following test types:
 - Acquisition only - no drive motion (only available for PI data acquisition)
Model Measurement - use to create models for compensated tests
Time History - create a time history for each DOF
Compensated Time History - use a model for compensation

3. **DOF, MODE (control), MODE (feedback):** Select the control degrees of freedom and the control and feedback modes for each DOF.

Select a DOF, Control mode and Feedback mode. When the **Add DOF** button is pressed, the selected DOF, Mode(control) and Mode(feedback) will be added to the DOF list box.

To delete a DOF from the list, highlight the DOF identifier in the list box and press the **Delete DOF** button.

To allow a customer’s transducer feedback to be used instead of 469D DOF feedback for the test achieved signal, check the **Specimen Control** box. If selected, the following panel appears:

![Feedback Substitution Panel](image)

This panel provides two list boxes. The first contains an entry for each DOF selected for control in this test. The second box contains an entry for each specimen transducer included in this test.

The operator must select one of each box. After a test, the feedback recorded from this DOF will be discarded and overwritten with the data acquired from the specimen channel (the second list box).

This panel requires that the units of the feedback channel matches the control mode specified in the previous test configuration screen (g’s or gal in most cases).

4. **Model:** Select a Model only if configuring a Compensated Time History. Enter the desired model name into the Model selection box. Pressing the Select button will open a selection box listing all available models. Refer to Section 2.7 for information pertaining to using the Select button.
5. **Acquisition Channels**: Pressing this button will open up the **Specimen Acquisition Channels** dialog to allow you to select specimen acquisition channels.

The selected channels are listed in the upper box. To add other channels:

a. Select a channel from the available channels selection box. Channels listed in parenthesis are already used and may not be selected. Channels preceded by an asterisk are active DOF feedback channels and are automatically acquired.

b. Select the "Use" button to add the channel to the selected channels list box.

c. To remove a channel from the selected channels list box, first select the channel in the selected channels list box and then select the "Delete" button. To delete all channels from the list box, select the "Delete All" button.

d. Select the "Finish" button to return to the Configure Test dialog.
6. **Copy**: Press this button to copy configuration parameters from an existing test. When this button is pressed, the **Copy Test Configuration** dialog will open.

First select the group in which the source test exists and then select the source test. Check the desired boxes to copy DOFs and/or Acquisition channel information. Note that if any DOFs and/or acquisition channels have already been defined, you cannot copy this information from the source test.

Select the “OK” button to return to the Configure Test Dialog.

Press the "OK" button on the Configure Test Dialog after entering all desired parameters. A Test Setup dialog will appear.
4.3.1 Test Setup Dialogs

A test setup dialog is opened when the "OK" button is pressed on the Configure Test dialog. There is a different Test Setup dialog for each test type.

4.3.1.1 Acquisition Only Test Setup Dialog

When the test type is Acquisition Only, the **Duration** dialog is opened.

![Acquisition Only Test Duration](image)

This dialog allows you to input the desired duration (in seconds) for the acquisition test. When you press the "OK" button, the test will be created. The STEX main dialog will reappear and the created test will appear in the Test list.

4.3.1.2 Model Measurement Test Setup Dialog

When the test type is Model Measurement, the **Define Random Motions** dialog is opened.

![Define Random Motions](image)
This dialog allows you to select an existing random shaping function (a real valued spectrum) along with a three-sigma level parameter for each degree of freedom.

Enter the following parameters on this dialog:
1. Choose the desired DOF in the DOF selection box.
2. Choose the desired shaping function for the selected DOF using the shape selection box. Shaping functions are created using the Shape option on the Analysis pulldown menu located on the STEX main dialog. Pressing the "Select" button will open a selection box listing all available shaping functions. Refer to Section 2.7 for information pertaining to using the Select button.
3. Enter the desired 3 Sigma level into the 3 Sigma text box.
4. Press the "Use Shape" button to enter the selected DOF and associated parameters into the DOF list.
5. Repeat steps 1-4 for each included DOF.
6. Enter the desired number of independent frames for the test into the Independent Frames text box. This value will default to one. Refer to Appendix B for information on random signals.
7. Use the “Update” button to calculate the duration of the test. The duration calculation is based on the number of independent frames and the frame size (derived from the shape function(s)).

When the "OK" button is pressed, the random signals will be created, one for each DOF. A vector will be created combining these time histories. The STEX main dialog will reappear, the created test will appear in the Test list and the created time histories and vector will appear in the Result list.
4.3.1.3 Time History and Compensated Time History Test Setup Dialog

When the test type is Time History or Compensated Time History, the Specify Target Time Histories dialog is opened.

![Specify Target Time Histories](image)

This dialog allows you to select an existing time history for each DOF included in the test configuration. Use the Factor fields to enter scaling factors to be applied to the specified time histories.

Enter the following parameters on this dialog:

1. Enter the desired time history for each DOF into the associated text box. The referenced time history will be copied to create a target vector. You can either type in the exact name of the desired Time History or use the Select button to open a selection box listing all available time histories. Refer to Section 2.7 for information pertaining to using the Select button.

When the "OK" button is pressed, the Taper Target Motions dialog will open.
The **Taper Target Motions** dialog allows you to add tapering to each target time history. You can specify the duration of the tapering at the beginning and the end of each time history. You may also choose no tapering.

Enter the following parameters on this dialog:

1. Enter the desired duration, in seconds, of tapering at the start and end of each time history. The duration may be zero, if desired.

2. If all the time histories have the same tapering, you can use the "All" button to copy the Start and End duration's defined for the first time history to the duration fields for the remaining time histories.

3. Pressing the "Plot" button will display the time histories as they exist before tapering.

4. Press either "Taper" or "No Taper" button.

Choosing **No Taper** will create the test using untapered time histories. After the test is created, the STEX main dialog will reappear and the test name will appear in the Test list box. If the test is compensated, the loopback step will follow. Refer to Section 4.3.1.3.1.

Choosing **Taper** will create tapered time histories along with a vector of these time histories. These time histories will be listed in the Results list box on the STEX main dialog. The test will be created using the tapered time histories. After the test is created, the STEX main dialog will reappear and the test name will appear in the Test list box.
Compensated Test Loopback

Note: This section applies only to systems equipped with a Pacific Instruments data acquisition system.

During a test, DOF feedback signals are filtered using the anti-aliasing filters. This filtering can add errors into the compensation process unless the loopback is performed. The result of the loopback is the Desired vector which is created by passing the Target vector through the anti-aliasing filters. The Desired vector is used for compensation.

After the Taper Target Motions dialog and prior to the loopback the following message box appears (only on systems equipped with an MTS 469D digital control system):

This dialog displays the duration of the loopback test and allows you to continue with the loopback test or cancel. If you choose to cancel, the loopback test will automatically be run when you attempt to execute a compensated test.

Note: The 469D must be in external analog mode. This is not checked by STEX.

When the “OK” button is pressed, the following dialog appears:
4.4 Executing Tests

Test Execution begins when you choose the "Execute" option from the Test pulldown menu on the STEX main dialog. Test execution steps vary with test type and data acquisition hardware. Section 4.4.1 describes the steps that occur when there is no data acquisition hardware connected to the STEX system and Section 4.4.2 describes the test execution steps that occur with data acquisition hardware.

4.4.1 Test Execution - No Data Acquisition Hardware

For systems without data acquisition hardware connected to the STEX system, a series of dialogs will appear to guide you through setting up and downloading drive files, performing test excitation using the real-time control system and importing acquired data into the STEX database.

All tests, with the exception of compensated time history tests, will begin with the Specify File to Receive Drive Data dialog. The compensated time history tests begin with compensated test dialogs which are used to effect the compensation process. These are followed by the Specify File to Receive Drive data dialog. Refer to Section 4.4.3.

In order to execute a test, STEX prepares a file containing time histories which will be used to drive the control channels on the test system. The Specify File to Receive Drive Data dialog is used to specify the name of a file in which to save the drive data for use by the real-time control system. The dialog box which gathers this information is a standard Windows SAVE AS dialog box.
After you specify a drive file name, STEX will download the drive data into that file, and then notify you when the file has been downloaded.

At this point, use the 469D real-time control system to perform test excitation.

When the test has finished, click "OK" on the Waiting for Test Dialog to notify STEX that the real-time control system has finished executing the test.

After you click "OK", STEX will prompt for the name of the file that contains the acquired data, using the following standard Windows Open dialog box.

Specify the location of the data that the real-time control system acquired. Once the file is specified, STEX will import the data, check it for consistency and then store it in the STEX database.
4.4.2 Test Execution - Data Acquisition Hardware

All tests, with the exception of compensated time history tests begin with a Channels to Monitor dialog which allows you to choose up to two channels to monitor during excitation. It is followed by a Pretest Checks dialog which displays information on the state of the test equipment and then a Test Excitation dialog which allows you to start and/or abort the test. Refer to Sections 4.4.2.2 - 4.4.2.4.

The compensated time history tests, begin with compensation test dialogs which are used to effect the compensation process. These are followed by the Channel to Monitor, Pretest Checks, and Test Excitation dialogs described in the preceding paragraph. Refer to Section 4.4.3.

Before test execution begins, STEX checks the full-scale values, units and descriptors associated with each acquisition channel against the current contents of the transducer database. If discrepancies exist, you are given the opportunity to resolve them through a series of reconciliation dialogs. Refer to Section 4.4.2.1. (Note that these dialogs apply to systems equipped with auxiliary data acquisition channels for recording specimen-mounted transducer signals.)

4.4.2.1 Reconciliation Dialogs

It is possible for a user to change information in the Transducer database between the time a test is defined and the time it is executed (e.g. transducers are recalibrated). This has potentially serious ramifications on the proper execution of the test, since the interpretation of control signals and acquired data signals are both scaled based on the calibrated full-scale value of the appropriate channel. STEX will attempt to identify such discrepancies when you execute a test, and will give you the opportunity to resolve the discrepancies using Reconciliation dialogs.

When the user chooses "Execute" option from the Test pulldown menu on the main dialog, STEX checks the values in the internal Stex database against the external database used to maintain transducer setup and calibration information. If a discrepancy is exists one of the following dialogs will open.

4.4.2.1.1 Control DOF Channel Discrepancy

The most serious discrepancy occurs when a DOF channel is involved, since the scaled data directly affects the magnitude of the signal used to drive the system’s actuators.
The following warning message will be displayed advising you of the seriousness of this discrepancy.

The dialog indicates that the feedback channel full-scale information is invalid for the Longitudinal DOF; the differing values are given. After pressing “OK” the test execution is canceled. The source of the discrepancy must be determined and fixed. The likely cause is a corrupt database file, however, the full-scale values for DOF feedbacks must agree with values defined for the control system. Great care is recommended in determining the proper full-scale values as these should have been defined during installation and rarely, if ever, change. If you are unsure as to how to proceed, contact MTS Service.

4.4.2.1.2 Specimen Channel Discrepancy

The Specimen Channel Discrepancy dialog is opened when STEX detects a discrepancy between the internal STEX database and the external Transducer database for channels other than control DOF. There will be different dialogs for different data acquisition systems as described in the following sections.

4.4.2.1.2.1 Specimen Channel Discrepancy Dialog – Pacific Instruments Data Acquisition

The following options exist for reconciling the channel database with the STEX test record:

- Cancel
- Use values from test record
- Use values from channel database
- Modify database manually, one channel at a time
Choosing this option results in changes to neither the STEX test record nor the channel database. The discrepancy will still exist and will reappear the next time the test is executed.

Use Values from Test Records
The channel information stored with the test record is copied to the channel database and execution proceeds. Note that the channel information stored in the test record originated when the test was created or the last time a reconciliation occurred.

Use Values from Channel Database
The channel information stored in the channel database is copied to the STEX test record.

Modify Database Manually, One Channel at a Time
For each channel for which a discrepancy was determined, the following Full-Scale Reconciliation dialog appears. You may adjust full-scale parameters for each channel until the discrepancies are eliminated. Note that this dialog may be slightly different for some data acquisition systems due to differences in hardware capabilities.

Along with the channel identifier, the full-scale values are given. The purpose of this dialog is to adjust channel information in the channel database to agree with the STEX test record full-scale.

You may adjust the various parameters manually, or you may select “Compute” to have the parameters set automatically. Selecting “Update” causes the Database Full-Scale value to be recomputed. When this value agrees with the STEX Full-Scale, you may proceed by pressing “OK”. If other discrepancies exist, this dialog will reappear, updated with another channel. If no other discrepancies exist, test execution continues.
4.4.2.1.2.2 Specimen Channel Discrepancy Dialog – MTS 498 and 493 Data Acquisition

The Specimen Channel Discrepancy dialog will appear if, after you have selected a test for execution, STEX determines that the channel information in its test record does not match the channel database file. This dialog lists the details of the problem channels.

The following options exist for reconciling the channel database with the STEX test record:

1. **Use STEX Values** – the database will be changed to reflect the values in the STEX record.
2. **Use Database Values** – the test record will be changed to reflect the values in the database.
3. **Cancel** - no changes are made and the execution is cancelled.
4. Double-click any channel in the STEX Name column to open a Channel Settings dialog (described in Section 4.4.4.2) and manually edit the full-scale parameters for that channel. The discrepancy list will be updated when the Finished button is pressed. If no discrepancies are found, the dialogs disappear and test execution proceeds.
4.4.2.2 Channels to Monitor Dialog

When you select "Execute" from the Test pulldown menu, the **Channels to Monitor** dialog will appear. If you are selecting a compensated test for execution the **Compensated Test** dialog will appear instead. Refer to Section 4.4.3.

This dialog allows you to select up to two channels to monitor during test excitation.

To select a channel, highlight a channel in the available list and press the "Add" button.

To delete a channel from the top Selected Channels list, first highlight the channel and then press the "Remove" button.

When channels are selected for monitoring, the Plot Limit fields are set to the channel full-scale values. You may change these limits to effect the way they are displayed during the test.

Press the "OK" button to continue with test excitation.
4.4.2.3 Pretest Checks Dialog

When you select "OK" on the Channels to Monitor dialog, the Pretest Checks dialog will appear.

This dialog provides the following information:

- The set of controlled DOFs, current scaling of each DOF, in percent, along with full-scale value

- Full-scale violations per DOF; a full-scale violation occurs when the DOF time history exceeds the full-scale value recognized by the system control hardware. When this occurs, the DOF time history should be scaled using the "Scale" button. See below.

- The set of specimen acquisition channels along with the full-scale value and filter setting for each channel

- Test equipment status warnings. These warning situations should be eliminated before executing the test. The warning list can be updated by pressing the "Recheck" button.

The "Recheck" button will update the warnings list and the full-scale violations list.

The "Plot" button will plot the time histories using the Plot dialog. Refer to Section 2.5.
The "Scale" button will open the Scale Drive Motion dialog, allowing you to apply a scale factor to each time history.

Enter the desired scale factors (in %) to be applied to the current DOF time histories. The current scale factor (% of the original time history) is displayed beside each DOF.

Pressing the "Revert" button will cause the DOF time history to revert back to its original level (apply original scale factor).

Press "OK" to apply the new scale factors to each DOF time history and return to the Pretest Checks dialog. Then press the "Recheck" button on the Pretest Checks dialog to update the Full-scale violations list.

When the system warnings and violations are eliminated, press the "Continue" button on the Pretest Checks dialog to continue with test excitation. Pressing "Abort" will cancel the execution and return to the STEX main dialog.
The "Kinematics" button will open the View Kinematics - Elcentro X-Axis dialog, displaying the estimated velocity, acceleration and displacement. Note that one of these three selections was given by the user at test definition and is used to calculate the other two parameters.

Use the listbox to select the signal to be displayed.

Pressing the “Details” button will open a statistics dialog for the signal currently displayed.

Pressing the “Save As” button will export the displayed signal to an external file.
4.4.2.4 Test Excitation Dialog

When you press "Continue" on the Pretest Checks dialog, the Test Excitation Control dialog will open.

This dialog displays test events, a test progress meter, and the channels that were selected on the Channels to Monitor dialog.

Press the "Abort" button to cancel the test execution and return to the STEX main dialog.

Press the "Start" button to begin the test execution. You can monitor test execution using the progress meter and displays on this panel.
When the test has completed, the following Test Completion dialog will appear.

![Test Complete dialog]

You have the option to specify how post-processing proceeds by indicating which types of specimen data have their means removed.

Pressing “Yes” button will save the data acquired during the test. This data will overwrite any pre-existing data.

Pressing “No” button will discard the data acquired during the test.

Pressing either the “Yes” or “No” button will also close the test window and return either to the main dialog or the compensated test dialog (if running a compensated test).
4.4.3 Compensated Test Dialogs

Whenever you select the compensation test for execution, the **Compensated Test** dialog appears.

This dialog provides the following information:

- the left list box displays the iterations that have been performed along with the average error RMS for each iteration
- the right list box displays the error RMS for each degree of freedom for the iteration selected in the left list box
- the amount of disk space used by the test and the available disk space is displayed

Selecting a non-current iteration in the left list box and then selecting the "Revert" button will delete all iterations (drive and achieved signals) that have occurred after the selected one.

Selecting "Purge" will delete all iterations except the current one.
Selecting "Execute" will execute the test using the most current iteration and drive. For systems with data acquisition hardware, the Reconciliation dialogs will appear, if necessary, followed by the Channels to Monitor dialog, the Pretests Checks dialog and then the Test Excitation dialog. Refer to Sections 4.4.2.2 through 4.4.2.4. For systems without data acquisition hardware, special dialogs will appear to guide the user through the test execution process. Refer to Section 4.4.1.

Selecting "New" will create a new iteration with a new drive. When you select "New", the Scale Correction dialog appears.

![Scale Correction Dialog](image)

This dialog displays a correction scale factor for each DOF. The correction is computed based on the error signal of the previous execution and the model associated with the test. Typical scaling is between 20% and 80%, with difficult tests having a scaling factor of 20%.

You may plot and scale the correction before applying the correction to the drive signal.
Selecting "View" will display the View Iteration dialog.

This dialog lists all of the vectors that exist for the test including old drive and achieved signals. Select one or more of these signals and then press the "Plot" button and a plotting dialog will appear for whichever signal(s) you selected.

Check the Plot ASD box to convert the plot to the frequency domain. For ASD plots, the number of hannings (smoothing) can be selected: none, 1, 5, 10, 50, 100 times.

"All DOFs" may be plotted or any one of the DOFs defined in the test.

The Select Type option has: Achieved, Error, Correction, or Drive. When selected, this will highlight all appropriate signals in the list above.

Deselect All will simply un-select any signals in the list.
When you select the “Convergence” button, the Error History plotting dialog appears, if two or more iterations have been completed.

The error history plot shows the history of the error RMS values for each DOF for all iterations completed. The error RMS for each DOF is plotted against iteration number. You may “Exit” or “Print” the image.
4.4.4 Channel Setup Dialogs

4.4.4.1 Channel Setup – Pacific Instruments Data Acquisition

You can modify the Transducer database directly by choosing the Channel Setup selection on the Hardware pull-down menu. The Transducer Database Channel Parameter dialog will open allowing you to view and manipulate the database.

Choose the channel to be viewed or edited in the Channel drop down list. When this field is highlighted, the up and down arrow keys can be used to scroll through the channels. DOF channels are identified by their DOF designation (e.g. Lateral Acceleration). No distinction is made between DOF channels and specimen acquisition channels.

The Full-Scale indicator is a read only text box that is updated whenever any of the parameters affecting full-scale are changed. These include the Gain, Sensitivity, Offset, and Unit parameters.
The **Variable Gain** check box is used to indicate when a gain is entered that does not correspond to one of the predetermined gain levels in the list box. The box is checked (or unchecked) automatically depending on whether the user selects a gain level from the list box or types in a level that is not in the list.

The Name, Location and Description are the three separate components of descriptive information that are stored in the Transducer Database. When viewed in STEX, these components are concatenated together, separated by colons.

The Filter list box contains a list of available filter settings for the channel. The user must choose a setting from the list. A filter setting would typically be chosen which is less than the Nyquist frequency. In addition, the list typically contains a Wideband setting, which is equivalent to no filtering.

You can change the filter setting for all channels by choosing the **Set Filters** selection on the **Hardware** pull-down menu. The **Set All Filter Cutoff Frequencies** dialog will open allowing you to select a low-pass cutoff frequency value.

![Set All Filter Cutoff Frequencies](image)

When you select OK, the selected low-pass cutoff frequency value will be applied to all channels in the channel database.
4.4.4.2 Channel Setup - MTS 498/493 Data Acquisition System

If your system is equipped with an MTS 498 Data Acquisition system, the Conditioner Calibration panel will open when you choose the Channel Setup selection on the Hardware pull-down menu.

Use this panel to calibrate the MTS 497 Series AC and DC Conditioner boards used in the 498 Data Acquisition system. Refer to the 497 Product Manual for information regarding the settings on this panel. Note that the Filter checkbox should always be enabled.
If your system is equipped with an MTS 493 Data Acquisition system, the following Conditioner Calibration panel will open when you choose the Channel Setup selection on the Hardware pull-down menu.

This panel is quite similar to that of the 498 version on the previous page. There are slight differences owing to the different features of a 493 DUC versus the 497 AC/DC conditioners. Note that the filter should be selected appropriately.
The desired channel is chosen from the list located in the upper left corner. You can change the identifier for a channel by double-clicking on the selected channel. The following dialog will appear:

![Rename Channel dialog]

You may define a new identifier for the channel. After selecting OK, the calibration panel will become active, and the list of channels will be updated.

Selecting the “Digital I/O” button on the 498 Conditioner Calibration panel or the “DIO” button on the 493 Conditioner Calibration panel results in the Digital I/O dialog.
Digital Outputs are shown in the upper area and the Digital Inputs are shown in the lower area. You may change a Digital Output by setting the appropriate check-box. All Digital Outputs may be set or reset using the buttons to the right.

Selecting “Sample DIO” causes all of the Digital Inputs to be read and the display updated.

Selecting the “Set DACs” button on the 498 Conditioner Calibration panel or the “DAC” button on the 493 Conditioner Calibration panel results in the Set D/As dialog.

<table>
<thead>
<tr>
<th>Voltage (±/− 10)</th>
<th>Accel</th>
<th>Vel</th>
<th>Displ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>0.063</td>
<td>0.030</td>
<td>0.010</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.049</td>
<td>0.030</td>
<td>0.054</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.033</td>
<td>0.042</td>
<td>0.039</td>
</tr>
<tr>
<td>Roll</td>
<td>0.052</td>
<td>0.056</td>
<td>0.013</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.066</td>
<td>0.056</td>
<td>0.040</td>
</tr>
<tr>
<td>Yaw</td>
<td>0.003</td>
<td>0.003</td>
<td>0.050</td>
</tr>
</tbody>
</table>

When this dialog first appears, STEX measures the current feedback level for all channels and displays the voltage value for each. This measurement is repeated whenever a D/A output is set.

This dialog allows you to set the current voltage output of the D/A converters.

Initially, the output levels are not known, so you must use “Set All”. After this, the Set button for each DOF will be enabled, and individual channels may be modified.
Selecting the “ADC” button on the 493 Conditioner Calibration panel results in the Sample 493 A/Ds dialog.

The operator may select a range of A/D and then Sample. Then, all of the selected channels are sampled and the results are broken into two lists. (Units are in volts.)

The top list contains all of the D/As, AND A/D channels whose voltages are near zero. The lower list contains any A/D channels whose voltages are not near zero. (Note that the D/As are not selectable; they are always sampled.)
4.5 Viewing Test Parameters

Before and after test execution, you may view the state of a test by highlighting the test in the Test list box on the STEX main dialog and selecting "View" from the Test pulldown menu. This will open the View Test dialog.

This dialog contains the following information:

- Test name
- Test type
- Test creation and modification dates
- Permanent storage information
- Test duration (in seconds)
- Model name (for compensated tests)
- Target motion vector name
- Desired motion vector name
- Drive motion vector name
- Specimen motion vector name (if any)
- Achieved motion vector name
- A list detailing the DOFs controlled by the test, along with mode and full-scale information
- A list of specimen acquisition channels along with identifier and full-scale information
Selecting a button next to one of the vector names (target, achieved, drive, or specimen) will open an appropriate statistics dialog for that vector. Refer to Section 2.4.2.

You can view time histories associated with the test by locating the time history (or vector) in the Result list box on the STEX main dialog and double clicking on it. This will open a statistic dialog. Refer to Section 2.4.2, Viewing Result Parameters.

Selecting the “Report” button will generate a test report in a text file. The filename is specified using the Save As dialog. The test report describes the test, including channel information as well as the test log.

Selecting the “View Test Log” button will open a View Test Log dialog, allowing you to scroll through the test log.

You may add one or more comment lines to the log by entering text in the edit field and selecting the “Add Line” button.

4.6 Deleting a Test

To delete a test from the currently active test group, highlight the test in the Test list box and select “Delete” from the Test pulldown menu on the main dialog. You will be prompted for verification of the desire to delete the selected test. If so instructed, the test and all associated time histories will be deleted from the test group.
Section 5 Analysis Results ... 5-1

5.1 User vs. System Results ... 5-1
5.2 Result Types ... 5-2
5.2.1 Time Histories and Vectors ... 5-2
5.2.2 Spectra .. 5-2
5.2.3 Response Spectra ... 5-3
5.2.4 Matrices And Models ... 5-3
5.3 Analysis Menu Options ... 5-4
5.4 Creating a New Result ... 5-5
5.4.1 Creating Time Histories ... 5-5
5.4.1.1 Addition and Scaling of Time Histories .. 5-6
5.4.1.2 Multiplying Time Histories ... 5-7
5.4.1.3 Time History Differential Operations 5-8
5.4.1.4 Inverse Shock Time History Synthesis 5-9
5.4.1.5 Inverse FFT of Spectrum ... 5-12
5.4.1.6 Random Time History ... 5-13
5.4.1.7 Filtering a Time History ... 5-14
5.4.1.8 Creating a Sine Sweep ... 5-15
5.4.1.9 Tapering Time Histories ... 5-16
5.4.1.10 Concatenation of Time Histories .. 5-17
5.4.1.11 Harmonic Distortion ... 5-18
5.4.1.12 Kinematic Conversion ... 5-19
5.4.1.13 Correlation ... 5-20
5.4.1.14 Accel Conversion ... 5-21
5.4.1.15 Sine Waves ... 5-22
5.4.1.16 Adjust Time Base .. 5-23
5.4.2 Creating Spectra ... 5-24
5.4.2.1 Addition and Scaling of Existing Spectra 5-25
5.4.2.2 Multiplying Spectra ... 5-27
5.4.3.3 Spectra Differential Operations .. 5-28
5.4.3.4 Smoothing Spectra ... 5-28
5.4.3.5 Shock Response Calculation ... 5-29
5.4.3.6 FFT of an Existing Time History .. 5-30
5.4.3.7 Spectral Analysis of Existing Time Histories 5-31
5.4.3.8 Designing a Digital Filter ... 5-32
5.4.5 Editing Existing User Results ... 5-33
5.5.1 Editing Time History and Real Spectrum 5-34
5.5.2 Editing Complex Spectrum .. 5-35
5.5.3 Editing a Shock Response .. 5-36
5.5.4 Editing a Model ... 5-37
5.6 Deleting Results ... 5-37
5.7 Data Import and Export .. 5-38
5.7.1 Data Import ... 5-38
5.7.2 Copying Results From Another Group ... 5-40
5.7.3 Data Export ... 5-41
5.7.4 Exporting All Results ... 5-41
5.7.5 Exporting Multiple Results ... 5-42
5.8 Creating Shape Results .. 5-43
5.9 Creating a Model .. 5-45
5.9.1 Editing the Inverse Transfer Function ... 5-46
Section 5
Analysis Results

Overview

Results are elements created during testing activities and are contained by a test group. Results have a name and a type. A result is either a simple function (usually of time or frequency) or a collection of simple functions or a model. Results are categorized as user or system, and are either created using the Analysis pulldown menu (user) or by STEX (system). Results are listed in the Results list box on the STEX main dialog.

When you double click on a result in the result list box, an appropriate statistic dialog will open, allowing you to view and plot result parameters. Each result type provides a uniquely formatted statistic dialog presenting information derived from the result content. Refer to Section 2.4.2, Displaying Result Parameters.

5.1 User vs. System Results

Results are categorized as System or User indicating the result's origin. Each result has a unique name.

User results (e.g. a time history, spectrum, model) are created by the user using options on the Analysis pulldown menu. User result names cannot include the brackets [and].

System results are created by STEX (i.e. time histories of a test including vectors, or elements of a model). You cannot delete or edit system results. When the system creates a result, it appends a special description to the beginning, enclosed in brackets:

Model Measurement Test [RANDOM:Lat]

The button “Hide (Show) System Results” located on the STEX main dialog will remove (or include) the system results from the list box, depending on the current state. This can be helpful when there is a large number of system results.
5.2 Result Types

Results include functions of time (time histories) and functions of frequency (spectra) but also include vectors, matrices, and models. Analysis results for a test group are arranged according to type and listed in the Results list box on the STEX main dialog.

The types of results are:

- Time Histories (including Vectors)
- Spectra
- Response Spectra
- Models (including matrices)

5.2.1 Time Histories and Vectors

A time history consists of a sequence of values defined along the time axis in equal increments (the group sample interval). The time history has units, duration, and point count.

A vector can only be created by the system and is generally a set of time histories associated with a list of channels (either drive or acquisition). For example, when a test is defined with a list of time histories (one for each degree of freedom controlled during the test), a vector is created by STEX. The vector refers to individual time histories defined in the test group; these time histories are listed separately in the result list box on the main dialog. The vector concept provides a meaningful construct for organizing the multitude of time histories created during test activities. The vector has a unique name and can be plotted.

5.2.2 Spectra

A spectrum consists of sequence of values defined along the frequency axis in equal increments (the frequency resolution). The values may be real or complex. A real valued spectrum is sometimes referred to as an ASD. A complex valued spectrum is sometimes referred to as a CSD and has both amplitude and phase information for each frequency included in the spectrum.

The span of the spectrum is from zero to the Nyquist frequency associated with the test group. The spectrum has units, resolution, and line count. Spectra may differ in resolution but not in span. While all spectra are bounded by the group Nyquist value, resolution is based on Nyquist and line count. When a spectrum is created, the user has the option of setting the Points Per Frame parameter (PPF) used whenever Fourier methods are used. Typically a set of possible PPF values are presented to the user; for example, frame sizes of 512, 1024, 2048, 4096, and 8192 are common. The count of the spectrum is exactly half the PPF and is known as Lines Per Frame (LPF). The resolution of the spectrum is the Nyquist frequency divided by LPF. Increasing the PPF parameter provides a finer resolution in the frequency domain.
5.2.3 Response Spectra

A response spectrum consists of a series of real values defined logarithmically along the frequency axis. The span of the spectrum must begin at a non-zero frequency. The highest frequency represented in the response spectrum must not exceed 80% of the test group Nyquist frequency. Values of the response spectra represent the motion characteristics of a specimen's response to some arbitrary excitation assuming a given damping. Response spectra may be computed from a time history and, conversely, a time history may be created based on a desired response spectra. Response spectra have units associated to describe the kind of data represented.

5.2.4 Matrices and Models

A result matrix is a set of similar results (time histories or spectra) that are arranged in rows and columns that correspond to channels of test control or acquisition. Most commonly the matrix is square. Further, matrices are created exclusively during system model calculations.

A model result consists of several matrices. The primary element of the system model is the transfer function. The transfer function is a matrix of complex results representing an approximation to the linear, dynamic characteristics of the excitation equipment. The model element called the expanded inverse is used during a compensated time history test to improve system fidelity.

The model is derived from the results of a model measurement test. The drive and achieved signals of the test are processed to derive the transfer function. The transfer function is inverted to create the inverse transfer function. Finally, the inverse transfer function is expanded. Prior to expansion, the user may edit the inverse transfer function to control aspects of the compensation process.
5.3 Analysis Menu Options

Results are created, edited, and deleted using the “Analysis” pulldown menu on the STEX main dialog.

The "Analysis" pulldown menu contains the following options:

- **New** (Create new time histories and spectra)
- **Edit** (Edit a result)
- **Delete** (Delete a result)
- **Rename** (Rename a result)
- **Import** (Import a [simple] result from a text file)
- **From Group** (Import a [simple] result from another test group)
- **Export** (Export a [simple] result to a text file)
- **Export Multiple** (Export one or more results to an external file.)
- **Export All** (Export all [simple] results to individual text files)
- **Shape** (Create a shape function - time history or spectra)
- **New Model** (Create a model from a test)
- **Load Plot** (Loads a previously saved plot setup for display)
- **Plot** (Plot a result)
5.4 Creating a New Result

When you select "New" on the Analysis pulldown menu on the STEX main dialog, the Create Analysis Result dialog appears.

![Create Analysis Result dialog]

This dialog is divided into two columns representing the operations that can be performed to create time histories and spectra, respectively. Once created, the result will appear in the Result list located on the main dialog. Press the "Exit" button to return to the main dialog.

5.4.1 Creating Time Histories

The create analysis result dialog allows the user to create time histories using the following operations:

- Addition (and scaling) of existing time histories
- Multiplication of existing time histories
- Differentiation and integration of an existing time history
- Inverse shock response synthesis
- Inverse FFT of an existing complex spectrum
- Random signal with specified level and frequency content
- Filtered existing time history
- Sine sweep (single or varying frequency - linear, logarithmic, octave)
- Taper an existing time history
- Concatenation of existing time histories
- Harmonic Distortion of an existing time history
- Correlation coefficient between 2 time histories
- Kinematic (i.e. units) conversion of an existing time history
- Accel Conversion corrects previously recorded acceleration signals
- Sine waves - create multiple sine wave results

Once created, the new time history will appear in the Results list box on the STEX main dialog. The following subsections further describe each of these options.
5.4.1.1 Addition and Scaling of Time Histories

When you select “Add” on the time history column of the Create Analysis Result dialog, the Add Time History dialog appears.

This dialog allows you to add together up to four existing time histories with scale factors and offset parameters. The duration of the resultant is equal to the longest time history referenced.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Enter the result units. The units of the first time history will be used if no units are specified.

3. Select up to four time histories. The names of the time histories may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7. All but the first source time history field may be blank.

4. Enter a scale factor for each time history, if desired.

5. If desired, input an offset value to be added to the result. Alternatively, you may elect to have the mean subtracted from the result by clicking the “Remove Offset” button; this disables the Offset edit field.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.2 Multiplying Time Histories

When you select “Multiply” on the time history column of the Create Analysis Result dialog, the Multiply Time History dialog appears.

This dialog allows you to multiply together up to four existing time histories with scale factors and offset parameters. The duration of the resultant is equal to the shortest time history referenced.

Enter the following parameters on this dialog:

1. Enter the desired result name.
2. Enter the result units. The units of the first time history will be used if no units are specified.
3. Select up to four time histories. The names of the time histories may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7. All but the first source time history field may be blank.
4. Select either Log, Exp or Normal to be applied to Time History #1. If neither is selected, each point in the selected time history is used in the multiplication. If Log is selected, the multiplication is performed using the log of each point. If Exp is selected, the exponent of each point in the selected time history is computed and used in the multiplication. Note that this applies only to the Time History #1.
5. Select either Inverted, or Normal to be applied to Time History #2. If Inverted is selected, the reciprocal of each time history #2 point value is computed prior to applying it as a factor to the result.
6. Enter a scale factor for each time history, if desired.
7. If desired, input an offset value to be added to the result. Alternatively, you may elect to have the mean subtracted from the result by clicking the “Remove Offset” button; this disables the Offset edit field.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.3 Time History Differential Operations

When you select “Differential” on the time history column of the Create Analysis Result dialog, the Differential Time History dialog appears.

![Differential Time History Dialog]

This dialog allows you to differentiate or integrate a time history with scaling and filtering options.

Enter the following parameters on this dialog:

1. Enter the desired result name.
2. Select a source time history. The name of the source time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.
3. Enter the result units. The units of the source time history will be used if no units are specified.
4. Enter a scale factor for the result time history, if desired.
5. Select the "Use Integration" box if integration is desired. If this box is not selected, the derivative will be computed.
6. Select the "High Pass Filter" box if you desire the result of the differential operation to be high pass filtered, with a cutoff frequency of 0.7 Hz, nominal.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.4 Inverse Shock Time History Synthesis

When you select “Inverse Shock” on the time history column of the Create Analysis Result dialog, the Inverse Shock Response dialog appears.

This dialog allows you to create an artificial shock profile from a desired shock response spectrum and a shaping function.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a desired shock response spectrum. The name of the spectrum may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Select the time history shape. The name of the shape may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

4. Enter the desired damping ratio. This value must be between 0 and 1.

5. Enter the result units. Must be acceleration units. Refer to the Appendix E for units that STEX will recognize.

6. Input the lines per octave. This value must be between 1 and 100. Lines per octave indicates the density of the analysis. The frequency range is determined from the desired shock spectrum.
Pressing the "OK" button causes the first iteration of time history synthesis to be performed. When this iteration is completed, the Inverse Shock Response (Iteration) dialog will appear.

The iteration dialog displays the current earthquake time history, an overlay plot of the desired and achieved shock response, the number of iterations completed, average error, peak error, and the number of iterations to be performed per step.

Selecting the "Iterate" button causes an iteration step to be performed; for each iteration, the time history is adjusted to bring the result shock response closer to the desired.

The "Iterations Per Step" field reflects the number of iterations done consecutively per step. After iteration, the plots are updated and the error statistics are recomputed. The previous error statistics are encoded in parenthesis along with the new values. For example 23.45% (65.35) indicates that the error of 65.35% was superseded with 23.45%.
Select “Plot Time History” to plot the time history. (This option provides a more functional plotting environment than that of the iteration dialog.)

Select “Plot Spectra” to plot the achieved shock response spectra.

Select “Plot PSD” to plot the current PSD function used by the synthesis algorithm to iterate.

Select “Edit PSD” to edit the values of the PSD function to be edited. Refer to Section 5.5, Editing Existing Results.

Select “Rephase” to randomize the phase function; this phase function is combined with the PSD by the iteration algorithm. Randomization may be useful for situations of non-convergence.

Select “Finished” to terminate the iteration process and store the result time history. You will be prompted to verify that iteration should cease. Then, you will be asked if the result shock spectrum should be saved.
5.4.1.5 Inverse FFT of Spectrum

When you select “Inverse FFT” on the time history column of the Create Analysis Result dialog, the Inverse Fourier Transform dialog appears.

This dialog allows you to create an inverse fast fourier transform.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select an input spectrum. The name of the input spectrum may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.6 Random Time History

When you select “Random” on the time history column of the Create Analysis Result dialog, the Generate Random Time History dialog appears.

This dialog allows you to create a random time history.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a spectral content shaping function. The name of the shaping function may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

Frame parameters are updated whenever the Select button is used to select an ASD shaping function; if a shaping function is typed in the name field, the Update button may be selected to update the frame parameters. Decay time is one half of a frame length.

3. Enter the result units.

4. Enter the 3-Sigma value. This value represents the amplitude maximum for 99.7% of the time history peak values.

5. Specify duration in seconds or by number of frames. If you choose seconds, the duration will be adjusted to encompass an even number of frames. The frame count refers to the number of Independent/Repeat frame pairs. Refer to Appendix B for information on random signals.

Pressing the "OK" button will create the new time history and return to the Create Analysis Analysis dialog.
5.4.1.7 Filtering a Time History

When you select “Filter” on the time history column of the Create Analysis Result dialog, the **Apply Filter** dialog appears.

This dialog allows you to apply a digital filter to an existing time history.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a source time history. The name of the source time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Select a filter (a real or complex function of frequency). The name of the filter may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

If “Use Filter Profile” is not selected, select the filter settings desired rather than selecting a pre-existing filter profile.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.8 Creating a Sine Sweep

When you select “Sweep” on the time history column of the Create Analysis Result dialog, the Generate Sweep dialog appears.

This dialog allows you to create sine sweep functions. Tapering may be performed using the tapering analysis function defined in the following section.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Enter the initial frequency and the final frequency. A single frequency “sweep” may be created by setting the initial and final frequencies to the same value (for linear and logarithmic sweeps only).

3. Enter the amplitude and units.

4. Select the sweep type:
 - Linear
 - Logarithmic
 - Octave

5. Enter the phase offset (defined from 0 to 360 degrees). This value determines the starting point of the sweep.

6. Enter the duration parameter:

 For linear and logarithmic sweeps, input the duration in seconds. For octave sweeps, the duration is computed using the inputted frequency rate along with the initial and final frequencies.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.9 Tapering Time Histories

When you select “Taper” on the time history column of the Create Analysis Result dialog, the Taper Time History dialog appears.

This dialog allows you to add tapering to a time history.

Enter the following parameters on this dialog:

1. Enter the desired result name. Note that if a result name is not specified, the source will automatically be tapered.

2. Select a source time history. The name of the source time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Select tapering at the start and/or end of time history.

4. Enter the taper duration. The duration of either taper is specified in seconds or as a percentage of the entire time history. The text on the button beside the duration edit field describes how the value shall be interpreted. Selecting the button toggles the text between “Seconds” and “Percent”.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.10 Concatenation of Time Histories

When you select "Concatenate" on the time history column of the Create Analysis Result dialog, the Concatenate Time History dialog appears.

This dialog allows you to link together up to four existing time histories with tapering.

Enter the following parameters on this dialog:

1. Enter the desired result name.
2. Enter the result units. The units of the first time history will be used if no units are specified.
3. Select up to four time histories. The names of the time histories may be entered manually or selected using the Result Selection dialog by pressing the "Select" button beside the name field. Refer to Section 2.7. All but the first source time history field may be blank.
4. Enter a tapering duration to be applied over the junction of the joined time histories. The tapering is divided equally between the two time histories.

Pressing the "OK" button will create the new time history and return to the Create Analysis dialog.
5.4.1.11 Harmonic Distortion

When you select “Harmonic Distortion” on the time history column of the Create Analysis Result dialog, the Harmonic Distortion dialog appears.

This dialog allows you to compute the harmonic distortion of a signal.

Enter the following parameters on this dialog:

1. Select an existing time history.
2. Select the number of harmonic peaks to use for calculation.
3. Select the fundamental frequency.
4. Adjust the frame size, if necessary.

Pressing “Statistics” will result in a statistics dialog for the result selected. Pressing the “OK” button will result in the distortion calculation as shown below.
5.4.1.12 Kinematic Conversion

When you select “Kinematic” on the time history column of the Create Analysis Result dialog, the Kinematic Conversion dialog appears.

This dialog allows you to create a new time history result based on the conversion of units for an existing time history. Both units must be one of acceleration, velocity, or displacement and the units must be recognized by STEX. Refer to Appendix E for a list of available units.

You may select the cut-off frequency for a high-pass filter that is applied before conversion.

Pressing the “OK” button will create the time history and return to the Create Analysis dialog.
5.4.1.13 Correlation

When you select “Correlation” on the time history column of the Create Analysis Result dialog, the Correlation Coefficient dialog appears.

![Correlation Coefficient dialog](image)

This dialog allows you to specify two time histories and compute the correlation coefficient between them.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Enter the Time History #1 or use the “Select” button to choose from the available time histories in the group.

3. Enter the Time History #2 or use the “Select” button to choose from the available time histories in the group.

Pressing the “OK” button will create the new time history and return to the Create Analysis dialog.
5.4.1.14 Accel Conversion

When you select “Accel Conversion” on the time history column of the Create Analysis Result dialog, the Accelerometer Compensation dialog appears.

![Accelerometer Compensation Dialog]

This dialog allows you to correct previously recorded acceleration signals by compensating for the dynamic response of the transducers. By creating and executing a special model measurement test with a single DOF of drive and one or more accelerometer specimen channels recorded, STEX can compute a transfer function for each channel. Each transfer function is then applied to the appropriate time history in the Conversion test, creating a new vector of corrected signals.

Enter the following parameters on this dialog:

1. Enter the desired result name.
2. Select the appropriate model measurement test from the list.
3. Select the appropriate conversion target test from the list.

Pressing the “OK” button will create the new vector. The appropriate acceleration signals in the target test achieved vector are recomputed based on the transfer function. Other signals (i.e. displacements) are simply copied to the new vector.
5.4.1.15 Sine Waves

When you select “Sine waves” on the time history column of the Create Analysis Result dialog, the Sine Waves dialog appears.

Enter the following parameters on this dialog:

1. Enter the name template used to automatically generate result names for all sine waves created

2. Set parameters defining the sine wave and select Add to add the definition to the list.

3. Repeat step 2 as needed

4. You may define a range of sine waves using the Add Range button. A sine wave will be created using the Frequency parameter; the increment will be added to this frequency and a new definition is created if that frequency does not exceed the End frequency. This repeats until the End Frequency is reached.

5. Select Create to have the sine waves generated.
5.4.1.16 Adjust Time Base

Purpose is to change the duration and frequency content of a signal as is necessary for scaled test specimens. For example, a \(\frac{1}{2} \) scale structure may require that the frequency content of El Centro be reduced from 0-20 hz to 0-10 hz.

This panel allows an existing signal to the time base adjusted by either of:
1) Selecting a new duration explicitly.
2) Selecting a scale factor to be applied to the duration of the existing selection.

A plot button is shown to allow the operator to see the result before creating the result.

In this example, selecting the duration would result in the elcentro signal being reduced from 61 seconds to 10, a reduction of \(\frac{10}{61} \). Selecting the 0.5 scale option would result in a reduction of 61 seconds to 30.5 seconds.
5.4.2 Creating Spectra

The create analysis result dialog allows the user to create spectra using the following operations:

- Addition (and scaling) of existing spectra
- Multiplication of existing spectra
- Differentiation and integration of an existing spectra
- Smoothing (Hanning) an existing spectra
- Shock response calculation
- FFT of an existing time history
- Spectral Analysis - ASD, CSD, Transfer Function, Coherence
- Digital filter amplitude profile (Butterworth or frequency elimination)

Once created, the new spectrum will appear in the Results list box on the STEX main dialog. The following subsections further describe each of these options.
5.4.2.1 Addition and Scaling of Existing Spectra

When you select “Add” on the spectrum column of the Create Analysis Result dialog, the Add Spectra dialog appears.

This dialog allows you to add together up to four existing spectra with scale factors and an offset parameter.

In the case where the resolutions of the specified spectra do not match (due to disparate PPF values), the result is defined with the finest resolution present. The add operation does not entail any interpolation upon spectra with the more coarse resolution; simple value repetition is employed.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Enter the result units. The units of the first spectrum will be used if no units are specified.

3. Select up to four spectra. The names of the spectra may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7. All but the first spectrum field may be blank.

4. Enter a scale factor for each spectrum, if desired.

5. Input a real-valued offset value to be added to the result, if desired.

Pressing the "OK" button will create the new spectrum and return to the Create Analysis dialog.
5.4.2.2 Multiplying Spectra

When you select “Multiply” on the spectrum column of the Create Analysis Result dialog, the Multiply Spectra dialog appears.

This dialog allows you to multiply together up to four existing spectra with a real factor and offset parameter.

In the case where the resolutions of the specified spectra do not match (due to disparate PPF values), the result is defined with the finest resolution present. The multiplication operation does not entail any interpolation upon spectra with the more coarse resolution; simple value repetition is employed.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Enter the result units. The units of the first spectrum will be used if no units are specified.

3. Select up to four spectra. The names of the spectra may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7. All but the first spectrum field may be blank. The first spectra may be inverted (i.e. the 1/x is used for each value of the spectra).

4. Enter a real factor and offset value to be added to the result, if desired.

Pressing the “OK” button will create the new spectrum and return to the Create Analysis dialog.
5.4.3.3 Spectra Differential Operations

When you select “Differential” on the spectrum column of the Create Analysis Result dialog, the Spectrum Differential dialog appears.

This dialog allows you to differentiate or integrate a spectrum with a scaling option.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a source spectrum. The source spectrum may be real- or complex-valued. The name of the source spectrum may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Enter the result units. The units of the source spectrum will be used if no units are specified.

4. Enter a scale factor for the source spectra, if desired.

5. Select the "Use Integration" box if integration is desired. If this box is not selected, the derivative will be computed.

Pressing the "OK" button will create the new spectrum and return to the Create Analysis dialog.
5.4.3.4 **Smoothing Spectra**

When you select “**Smooth**” on the spectrum column of the Create Analysis Result dialog, the **Smooth Spectrum** dialog appears.

![Smooth Spectrum Dialog](image)

This dialog allows you to perform a smoothing operation (Hanning) on a spectrum.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a source spectrum. The name of the source spectrum may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Enter the iteration count. This is the number of times the smoothing operation will be performed on the source spectrum.

Pressing the "OK" button will create the new spectrum and return to the Create Analysis dialog.
5.4.3.5 Shock Response Calculation

When you select “Shock Response” on the spectrum column of the Create Analysis Result dialog, the Shock Response dialog appears.

This dialog allows you to calculate a shock response of a source time history.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select a source time history. The name of the source time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Enter the initial and final frequency values.

4. Enter the lines per octave. This value defines the "coarseness" of analysis over the frequency range.

5. Enter the damping ratio.

6. Select one of the following result types:
 - Absolute Acceleration
 - Equivalent Static Acceleration
 - Pseudo Velocity
 - Relative Displacement

7. Enter the result units. The specified result units must match the result type. (Refer to Appendix E for a list of units strings recognized by STEX).

Pressing the "OK" button will create the new shock response and return to the Create Analysis dialog.

If a Plot Ref Shock response is selected, a plot dialog will appear after the new Shock Response is created, both results will be plotted, allowing you to compare the two results.
5.4.3.6 FFT of an Existing Time History

When you select “FFT” on the spectrum column of the Create Analysis Result dialog, the Fast Fourier Transform dialog appears.

This dialog allows you to create a fast fourier transform of an existing time history.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select an input time history. The name of the time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Enter the frame parameters: start index and frame size.

 The start index is the number of values from the start of the time history to skip over; the FFT is performed on the number of values specified in the frame size beginning at the start index.

 The dialog displays the frequency resolution and frame duration based on the frame size selection.

Pressing the "OK" button will create the new FFT and return to the Create Analysis dialog.
5.4.3.7 Spectral Analysis of Existing Time Histories

When you select “Spectral Analysis” on the spectrum column of the Create Analysis Result dialog, the Spectral Analysis dialog appears.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select an input time history. The name of the time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

3. Select an output time history, if needed. The name of the time history may be entered manually or selected using the Result Selection dialog by pressing the “Select” button beside the name field. Refer to Section 2.7.

4. Enter the frame size.
 As you change the frame size, the frequency resolution is updated.

4. Select one of the following result types:
 - ASD (auto spectral density of a single time history)
 - CSD (cross spectral density of two time histories)
 - Transfer Function (of two time histories)
 - Coherence (of two time histories)

Pressing the "OK" button will create the new FFT and return to the Create Analysis dialog.
5.4.3.8 Designing a Digital Filter

When you select “Design Filter” on the spectrum column of the Create Analysis Result dialog, the Create Filter dialog appears.

![Create Filter dialog]

This dialog allows you to create a digital Butterworth or Frequency Elimination filter.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select one of the following filter shapes:
 - Low Pass
 - High Pass
 - Notch
 - Bandpass

3. Select the spectral resolution value.

4. Enter the low and high cutoff frequencies. The high cutoff frequency field is disabled when the filter shape is low-pass. The low cutoff frequency field is disabled when the filter shape is high-pass. Both fields are enabled when the filter shape is notch or bandpass.

5. Select the filter type; Butterworth or Frequency Elimination. If you select Butterworth, you must also select the order of the filter.

Pressing the "OK" button will create the new filter and return to the Create Analysis dialog.
5.5 Editing Existing User Results

You can edit an existing user result by highlighting the element in the result list (by left-clicking the mouse over the element name) and selecting “Edit” from the Analysis pull-down menu on the main dialog. The following result types may be edited:

- Time Histories
- Real and Complex Spectra
- Shock Response Spectra
- Models

Note that vectors and matrices may not be edited. A model can only be edited by making changes to the inverse transfer function (and therefore the resulting expanded inverse).
5.5.1 Editing Time History and Real Spectrum

When you highlight a time history or real valued spectrum in the result list box and select “Edit” from the Analysis pulldown menu on the main dialog, the time history-editing dialog appears.

A scrolling list is presented with three columns, one line per point in the time history. The three columns of the value list are index, independent axis value at that index, and result value at that index.

A Channel edit field allows you to modify the channel name; this name usually denotes the control DOF associated with the signal and is displayed on the left of the result plot. Note that the name of the result being edited is displayed in the caption of the editing dialog.

You may scroll through the list of values and select a line of the list box using the mouse. The value in the update edit box reflects the value of the result at the selected point. You may modify the value in the edit field, and select "Update" to modify the result. The next line is automatically highlighted for editing.

You may change the units defined for the result. Note that changing the units merely changes the units text field. No units conversion is performed on the actual result values.

Pressing "OK" will save the changes and return to the Main dialog. Pressing "Cancel" will cancel the operation.
5.5.2 Editing Complex Spectrum

When you highlight a complex spectrum in the result list box and select “Edit” from the Analysis pulldown menu on the main dialog, the complex spectrum-editing dialog appears.

The name of the result being edited is displayed in the caption of the editing dialog.

A scrolling list is presented with four columns, one line per value in the spectrum. The four columns of the value list are index, independent axis value at that index, and result values, amplitude and phase, at that index.

You may scroll through the list of values and select a line of the list box using the mouse. The values in the update edit boxes reflect the complex value of the result at the selected frequency. You may modify the value in the edit fields, and select “Update” to modify the result. The next line is automatically highlighted for editing.

By selecting the format button in the lower left corner of the dialog, you may toggle the format of the complex value display in the list box. Initially, the list box is formatted with amplitude and phase for each frequency; the format button reads “See Real/Imaginary”. Selecting the button in this state causes the list box to be reformatted with real and imaginary components of the complex function values; the button text is changed to “See Amplitude/Phase”. Note that the effect of the Update button matches the current format of the list box.

Pressing “OK” will save the changes and return to the Main dialog. Pressing “Cancel” will cancel the operation.
5.5.3 Editing a Shock Response

When you highlight a shock response spectrum in the result list box and select "Edit" from the Analysis pulldown menu on the main dialog, the shock response spectrum-editing dialog appears.

A scrolling list is presented with three columns, one line per value in the spectrum. The three columns of the value list are index, independent axis value at that index, and result value at that index.

You may scroll through the list of values and select a line of the list box using the mouse. The values in the update edit boxes reflect the value of the result at the selected frequency. You may modify the value in the edit field and select "Update" to modify the result. The next line is automatically highlighted for editing.

Pressing "OK" will save the changes and return to the Main dialog. Pressing "Cancel" will cancel the operation.

<table>
<thead>
<tr>
<th>Index</th>
<th>Hz</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>5.000000e-001</td>
<td>4.617020e-001</td>
</tr>
<tr>
<td>000001</td>
<td>5.360130e-001</td>
<td>5.128957e-001</td>
</tr>
<tr>
<td>000002</td>
<td>5.746254e-001</td>
<td>5.681499e-001</td>
</tr>
<tr>
<td>000003</td>
<td>6.160179e-001</td>
<td>6.274075e-001</td>
</tr>
<tr>
<td>000004</td>
<td>6.603910e-001</td>
<td>6.905270e-001</td>
</tr>
<tr>
<td>000005</td>
<td>7.076633e-001</td>
<td>7.572566e-001</td>
</tr>
<tr>
<td>000006</td>
<td>7.589551e-001</td>
<td>8.272180e-001</td>
</tr>
<tr>
<td>000007</td>
<td>8.136253e-001</td>
<td>8.992889e-001</td>
</tr>
<tr>
<td>000008</td>
<td>8.722324e-001</td>
<td>9.747529e-001</td>
</tr>
<tr>
<td>000009</td>
<td>9.350611e-001</td>
<td>1.050928e+000</td>
</tr>
<tr>
<td>000010</td>
<td>1.002416e+000</td>
<td>1.127569e+000</td>
</tr>
<tr>
<td>000011</td>
<td>1.074622e+000</td>
<td>1.205646e+000</td>
</tr>
<tr>
<td>000012</td>
<td>1.152029e+000</td>
<td>1.324471e+000</td>
</tr>
<tr>
<td>000013</td>
<td>1.235012e+000</td>
<td>1.537417e+000</td>
</tr>
</tbody>
</table>
5.5.4 Editing a Model

When you highlight a model in the result list box and select “Edit” from the Analysis pulldown menu on the main dialog, the inverse transfer function-editing dialog will appear. Refer to Section 5.9.1, Editing the Inverse Transfer Function. The original (unmodified) inverse transfer function is presented for editing.

If an expanded inverse exists, a confirmation message box will appear with a warning that continuing will destroy the expanded inverse currently stored in the group. You may continue with the model editing by pressing the “Continue” button or cancel the operation.

After the inverse has been edited and you select “Exit”, the new expanded inverse is created, and the main dialog appears.

5.6 Deleting Results

When you highlight a result in the result list and select “Delete” from the Analysis pulldown menu on the main dialog, you will be prompted for verification of the desire to delete the selected result. If so instructed, the result is deleted from the test group.

Note that only user simple results may be deleted; vectors and matrices may not be deleted. Models may be deleted provided no compensated tests are referencing the model; when a model is deleted, all matrices and functions associated with the model are deleted as well.

Time histories and vector associated with a test are deleted whenever the test is deleted.
5.7 Data Import and Export

Simple STEX results may be stored externally to the group database in text files (one result per file). The external file is unknown to STEX and may be deleted or otherwise manipulated. Refer to Appendix D for file formats.

Select “Import” from the Analysis pulldown menu on the main dialog to read a text file containing a result definition. Refer to Section 5.7.1.

Select “From Group” from the Analysis pulldown menu on the main dialog to copy a result that is stored in another group. Refer to Section 5.7.2.

Select “Export Multiple” from the Analysis pulldown menu on the main dialog to select tests and/or results for export to external files. Refer to Section 5.7.5.

Select “Export” from the Analysis pulldown menu on the main dialog to write the currently highlighted result in the current test group to an external text file. (Only time histories, real and complex spectra, and shock response spectra may be written to an external file; matrices, vectors, and models may not be manipulated with import/export except through their individual components). Refer to Section 5.7.3.

Select “Export All” from the Analysis pulldown menu on the main dialog to write all the results in the current test group to external text files. (Only time histories, real and complex spectra, and shock response spectra may be written to an external file; matrices, vectors, and models may not be manipulated with import/export except through their individual components). Refer to Section 5.7.3.

5.7.1 Data Import

When you select “Import” from the Analysis pulldown menu on the main dialog, the file import dialog appears.
You may manipulate the filename and directory to select a file containing a text instance of a result. (Refer to Appendix D for file formats recognized by STEX). You may define the name of the result to be displayed in the result list on the main dialog; if not defined, the complete filename is used as the result name.

Selecting “Browse” results in an Open dialog.

The result to be imported is given a name. A file source is also required describing the file format. Refer to the Appendix D for file formats.

If the file source is ASCII No Header, you will be prompted for more information with the following dialog.

![Import Result Information dialog](image)

The result name may be changed. You must specify the result type and the Y Units. If the imported data does not meet the requirements for the selected result type, a message box appears.
5.7.2 Copying Results From Another Group

When you select “From Group” from the Analysis pulldown menu on the main dialog, the Copy Results From Group dialog appears.

You may select the result name, the source group, and the result to copy. When the group selection is changed, the result list is updated. Only time histories and spectra (real, complex, and shock response) results may be copied. If the result name field is left blank, the original result name is used.

If the spectrum has a Nyquist frequency that disagrees with the current group, you are notified and asked whether or not to continue; if you choose to continue, the spectrum is copied but the Nyquist frequency is modified to agree with the current group.

If the time history has a sample interval that disagrees with the current group, you are notified. You may cancel the file copy or choose to have the signal interpolated; a linear interpolation scheme is employed. Note that this type of interpolation can result in signal distortion, especially if the target group has a lower Nyquist frequency.
5.7.3 Data Export

When you highlight a result in the result list and select “Export” from the Analysis pulldown menu on the main dialog, the Export Result dialog appears.

![Export Result dialog]

This dialog allows you to specify a directory and filename wherein the contents of the result is written. Selecting “Browse” results in an Open dialog.

A target file location is provided. The file format must also be specified. Refer to the Appendix D for file formats.

5.7.4 Exporting All Results

When you select “Export All” from the Analysis pulldown menu on the main dialog, the Export All Results dialog appears.

![Export All Results dialog]

This dialog allows you to specify a directory into which all simple results will be written to external files.

One external file is created for each time history, real spectrum, complex spectrum, and shock response spectrum in the current test group.

A directory must be provided as well as the file format. Refer to Appendix D for file formats.
5.7.5 Exporting Multiple Results

When you select “Export Multiple” from the Analysis pulldown menu on the main dialog, the Export Multiple Results dialog appears.

You may select one or more results and select Add Result to have the result(s) added to the Selected list on the right.

You may double-click any tests listed in the bottom left list, to have that test added to the Selected list.

When all the necessary results and tests are listed, select a file format. Then enter a path to the directory to receive the exported files.

To perform the export, select OK.
5.8 Creating Shape Results

When you select "Shape" on the Analysis pulldown menu on the main dialog, the Create Shape dialog appears.

This dialog allows you to create a shaping function that can be used when creating random signals and inverse shock responses and running model measurement tests. The type of shaping function can be ASD, time history, or shock spectrum.

Enter the following parameters on this dialog:

1. Enter the desired result name.

2. Select one of the following result types:
 - ASD (used when creating random signals)
 - Time History (used with inverse shock response)
 - Shock Spectrum (used with inverse shock response)

When you press the "OK" button, the Value Insertion dialog will appear.
The **Value Insertion** dialog allows you to specify result units, frame size (for ASD shapes only), and to insert values into the X-Y list.

Enter the following parameters on this dialog:

1. Enter the desired result units.
2. Select the desired frequency resolution.
3. Enter values into the X-Y list by using the text boxes and Add>> button. Input the desired X value into the first textbox and the corresponding Y value into the second box. Press the ADD>> button to insert this X-Y pair into the list.

Note that for ASD shapes, the X-values may be from 0 to Nyquist only; these values are inserted automatically into the list when presented.

Log interpolation is provided for ASD shapes only. Y-values must be non-zero for log interpolation.

To change the Y-value for an X-value already included in the list, you may simply add the value in the normal fashion: the Y-value will be updated.

Also, double-clicking an element of the list will delete the pair.

Once the proper values are listed, select “OK” and the new result will be created by *interpolating* the values of the list.
5.9 Creating a Model

A model is derived from the results of a model measurement test and is used during a compensated time history test.

The drive and achieved signals of the model measurement test are processed to derive the transfer function. Intermediate results of this calculation are saved initially but may be deleted later in the model processing. The transfer function is inverted to create the inverse transfer function. Finally, the inverse transfer function is expanded. Prior to expansion, you may edit the inverse transfer function to control aspects of the compensation process.

When you select “New Model” on the Analysis pulldown menu on the main dialog, the New Model dialog appears.

This dialog allows you to specify a model result name and a model measurement source test. You may use the mouse to select the source test from a list of model measurement tests.

When you press the “OK” button, the transfer function and inverse transfer function are computed. Then the Edit Model dialog will appear, allowing you to edit the inverse transfer function before it is expanded.
5.9.1 Editing the Inverse Transfer Function

The *Inverse Transfer Function* dialog will appear when you press "OK" on the New Model dialog.

The inverse is displayed in this dialog.

Left clicking on any element of the inverse transfer function graphical display will bring up a plot dialog of only that element. That element may be analyzed and then dismissed to continue editing.
The following windows are movable and consist of four primary controls:

- An element selection matrix
- A plot range control
- An editing range
- Editing buttons with associated value fields

Element Selection Matrix
The element selection matrix consists of a matrix of check boxes; the dimensions of this matrix reflect the dimensions of the model (and expanded inverse) currently under construction.

If an element of the selection matrix is checked, the corresponding element of the matrix is effected by the Set, Clip, Hanning, Interpolate, and Import editing operations (see below).

The Select matrix Elements buttons:
- **All** - selects all checkboxes, **None** - deselects all checkboxes.
- **Main** – selects all main diagonal checkboxes and deselects non-main diagonal checkboxes.
- **Off** – opposite of main, selects all non-main diagonal checkboxes and deselects main diagonal checkboxes.
- **1 and 2** – similar to range buttons. Shift key defines 1 and 2 to current checkbox configuration; pressing 1 or 2 without shift button sets current checkboxes to the current definition for that button.
Plot Range Control

There are undo/redo buttons. The Checkboxes labeled Range, Edit, Checks, allow the little dialogs to be hidden or re-displayed to clear room on the screen. Log Plot toggles the graphical display setting of linear or log plot of the inverse transfer function.

If the Overwrite Inverse box is checked the editing changes to be permanently applied to the Inverse Transfer matrix. Otherwise, the changes are only used to compute the Expanded Inverse and are lost if re-edited.

Define Range Control

The editing range control specifies a range over span of the complex functions within the inverse transfer function.

Preset ranges may be defined using “Define Ranges”. Holding the shift key and selecting buttons 1 or 2 or 3 will define whatever the current range is to correspond with that button. Then, next time 1 or 2 or 3 is selected (without shift) that range is used to define the edit boxes (where 0 and 256 are shown here).

Editing Buttons with Associated Value Fields

The editing buttons provide the following operations:

- **Set To** (Set the amplitudes over a range to a single value)
- **Clip Using** (Limit the maximum amplitude over a range)
- **Hannings** (Apply a hanning operation over each matrix element)
- **Import** (Import a complex function from an external file)
- **Interpolate** (Perform linear interpolation over a range)

Using the Import option, a Selection dialog appears (page 2-20) that allows the operator to select an existing spectrum that will replace the elements selected in the checkboxes (Select Matrix Elements). The Import function allows the elements to be defined using a spectrum defined in the test group (not an external file).
When you select “Select” on the model-editing dialog, the **Open File** dialog appears.

![Open File Dialog](image)

Use this dialog to select and open the file that contains the spectrum you want to use to replace selected elements of the inverse transfer function. The spectrum must be complex and match the model in terms of spectral resolution and value count.

Plot Range Control

You may modify the limits of the inverse transfer function plots on the Edit Inverse dialog. By setting the “From” and “To” fields to the desired sub-span (from zero to Nyquist) and selecting “Update”, the graphs are redisplayed with the desired span.

When you select “Exit” on the Edit Inverse dialog, the expanded inverse is created from the inverse transfer function. (Refer to Appendix C for details of this process.) The following results are created:

- Achieved ASD and Drive ASD
- Achieved/Drive CSD
- Transfer Function
- Inverse Transfer Function
- Coherence Matrix
- Determinant Spectrum
- Impulse Response
- Expanded Inverse
- Specimen Transfer Function (if specimen channels are present)
The **Select Model Elements** dialog will appear to allow you to decide which model elements to keep or delete.

The expanded inverse is required for use with compensated tests; the inverse transfer function is required in case the expanded inverse needs to be recreated. The remaining model elements may be kept or deleted at the user’s discretion. Check the boxes of the elements you wish to keep. You can press the "**Keep All**" button to select all the elements or the "**Keep None**" button to deselect all the elements. When you are finished selecting the elements, press the "**Finish**" button. Model elements not checked on the dialog are deleted before the main dialog reappears.
Appendix A
Naming Conventions

All data stored in the STEX database are given unique names that you choose when you create the data.

Examples:

Test Group: Test Group for XYZ (S.R. 100 Hz)

Result: Sweep 1 to 10 Hz at 1 g for 10 sec

When you create a test group, test or result you specify a name that describes the item.

A name must be unique so that no like data objects have the same name.

A name may be up to 40 characters in length.

A name that you select may not use the bracket characters [or]. When STEX creates a system result (i.e. time histories of a test or elements of the model), a special description is appended to the end, enclosed in brackets.

The possible types are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSD</td>
<td>Drive Spectral Density</td>
</tr>
<tr>
<td>ASD</td>
<td>Feedback Spectral Density</td>
</tr>
<tr>
<td>CSD</td>
<td>Cross Spectral Density (of Drive and Feedback)</td>
</tr>
<tr>
<td>TRF</td>
<td>Transfer Function</td>
</tr>
<tr>
<td>COH</td>
<td>Coherence</td>
</tr>
<tr>
<td>SPCTRF</td>
<td>Specimen Transfer Function</td>
</tr>
<tr>
<td>IMPULSE</td>
<td>Impulse Response</td>
</tr>
<tr>
<td>INVERSE</td>
<td>Inverse Transfer Function</td>
</tr>
<tr>
<td>EXPAND</td>
<td>Expanded Inverse Transfer Function</td>
</tr>
<tr>
<td>RANDOM</td>
<td>Random Time History or Vector</td>
</tr>
<tr>
<td>TARGET</td>
<td>Target Time History or Vector</td>
</tr>
<tr>
<td>ACHIEVED</td>
<td>Achieved Time History or Vector</td>
</tr>
<tr>
<td>DESIRED</td>
<td>Desired Time History or Vector</td>
</tr>
<tr>
<td>ERROR</td>
<td>Error Time History or Vector</td>
</tr>
<tr>
<td>DRIVE</td>
<td>Drive Time History or Vector</td>
</tr>
<tr>
<td>CORR</td>
<td>Correction Time History or Vector</td>
</tr>
<tr>
<td>SPECIMEN</td>
<td>Specimen Time History or Vector</td>
</tr>
<tr>
<td>DETERMINANT</td>
<td>Determinant</td>
</tr>
</tbody>
</table>
The channel (if present) is constructed based on the channel associated with the result.

Example:

My Model [CSD:Ch1,Ch2]
This system result is the CSD between channel 1 and channel 2.

The description is provided by the user.
STEX allows iterative correction of drive signals with its compensated time history test. The process involves adding a correction based on an error signal and a system model. A model is computed based on a model measurement test.

A model measurement test uses a random signal for each DOF included in the test. The following describes the way a random is assembled.

A random is a specially constructed time history designed to result in an accurate and useful characterization of the excitation equipment. The characterization is recorded in a transfer function matrix that describes the response of the system according to a given input.

The random signal is broken down into frames, all with the same point count. All randoms in a vector associated with the test use the same frame size which is derived from the number of lines in the shape ASD.

Frames are characterized as independent and repeat frames. Independent and repeat frames come in pairs; these frames are identical except that tapering is performed on the independent frames to avoid transient motions in the random response. These frames are derived from a shaping ASD (a real-valued spectrum) that defines the frequency content of the random.

The following example demonstrates the way frames are assembled in a two DOF, "three" frame random. Note that the three refers to three I/R pairs.

<table>
<thead>
<tr>
<th>DOF1</th>
<th>T</th>
<th>R1</th>
<th>I2</th>
<th>R2</th>
<th>I3</th>
<th>R3</th>
<th>T</th>
<th>Z</th>
<th>Z</th>
<th>Z</th>
<th>Z</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOF2</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>T</td>
<td>I2</td>
<td>R1</td>
<td>I2</td>
<td>R3</td>
<td>T</td>
</tr>
</tbody>
</table>

T = Tapered independent frames
I# = #th independent frame
R# = #th repeat frame
z = zero frame

Note that I2 and R2 are identical except that the beginning of I2 has been tapered to match the end of R1.
The repeat frames are used in the spectral calculation used to derive the model. The response taken during the independent frame is assumed to contain a transient component that is not desirable and can cause inaccuracy in the model.

The number of frames in a test of N DOFs and M I/R pairs is:

$$NF = 2M^2N + 1$$

Increasing the number of I/R pairs in a test increases both the accuracy of the model and the potential damage done to the specimen during the model measurement test.

With low damped systems, a larger frame size should be employed so that the transient component may be damped out during the independent frame.
A model represents a statistical characterization of the control system testing activities. The model consists of several elements including the expanded inverse transfer function. The remaining model elements are intermediate results of the expanded inverse computation.

The expanded inverse transfer function is used directly during the compensation process by which STEX iteratively attempts to improve the response characteristics of a test to match the target motions defined by the operator.

The model is defined for all control DOFs included in the model measurement (random) test from which the model is derived. The model matrices are $n \times n$ in size, where n is the number of DOFs, except for the specimen transfer function which has 7 DOF columns, and the number of rows corresponds to the number of specimen channels in the model measurement test.

The model elements are:

- Drive Auto Spectral Density (ASD)
- Achieved Auto Spectral Density (ASD)
- Drive/Achieved Cross Spectral Density (CSD)
- Transfer Function
- Inverse Transfer Function
- Coherence Function
- Impulse Response
- Specimen Transfer Function
- Expanded Inverse
- Determinant

These elements are described below.

Drive Auto Spectral Density (ASD)

The Drive Auto Spectral Density (ASD) is the auto spectral density of the drive vector of the model measurement test used to compute the model. This matrix is square ($n \times n$, where n is the number of DOFs in the test).

Achieved Cross Spectral Density (CSD)

The Achieved Auto Spectral Density (ASD) is the auto spectral density of the achieved vector of the model measurement test used to compute the model. This matrix is square ($n \times n$, where n is the number of DOFs in the test). Due to the vector nature of the data, ASD's may have non-zero phase.
Drive/Achieved Cross Spectral Density (CSD)

The Drive/Achieved Cross Spectral Density (CSD) is the cross spectral density of the drive and achieved vectors of the model measurement test used to compute the model. This matrix is square \(n \) by \(n \), where \(n \) is the number of DOFs in the test.

Transfer Function

The Transfer Function represents the response of the control system to a generic drive signal. Since the transfer function is a matrix, the relationship between DOFs is the model.

The transfer function is derived from the Drive Auto Spectral Density (ASD) and the Drive/Achieved Cross Spectral Density (CSD) of the model to which it belongs.

The transfer function is inverted to derive the Inverse Transfer Function.

Inverse Transfer Function

The Inverse Transfer Function is the inverse of the Transfer Function and is used to derive the Expanded Inverse Transfer Function. Using the Model editing dialog, you can effect the compensation process by manipulating the inverse transfer function. These changes are not permanently stored in the inverse but are used during the expansion to derive the expanded inverse.

Coherence Function

The Coherence Function measures the linearity of the system represented by the model.

A coherence value of 1 is ideal and represents linearity. A linear system is comparatively easier to iterate than a non-linear system.

A coherence value of 0 implies non-linearity. Coherence values close to zero usually prove more difficult to control using compensation.

Specimen Transfer Function

Since the DOF feedback vector is used as the “drive” parameter of the specimen transfer function calculation, the results may be less accurate. Unlike normal drive vectors, the feedback vector is effected by various control system characteristics (for example, cross coupling). These effects can compromise the transfer function calculation algorithm. Users should be aware of this when evaluating this model element.

The Specimen Transfer Function is the transfer function between the driven DOFs and the specimen acquisition channels in the model measurement test.

This matrix is not necessarily square. The number of rows correspond to the number of acquisition channels, while the number of columns correspond to the number of DOFs.

Each element of the specimen transfer function approximates the response of the specimen to the motion of the corresponding DOF.

This matrix is only computed if the model measurement test contains specimen channels. If more than six such channels are defined, only the first six are used.
Impulse Response

Better results may be obtained by increasing the frame size of the random shape spectra and creating a new model measurement test; adjusting the sampling interval (in a new test group) will also effect the frame duration.

The Impulse Response function is the transfer function represented in the time domain (via FFTs). The impulse response function is composed of time histories arranged in a matrix format and is a result of the model computation.

Problems may arise during a compensated test if the impulse response time histories do not damp out completely by the half frame point. In such a case, the transient component of the system response will not have been damped by the time the random repeat frame occurs during the model measurement test. This can result in inaccuracy in the transfer function.

Expanded Inverse

The Expanded Inverse is derived from the Inverse Transfer Function of the model to which it belongs.

Before expansion, you can edit the inverse using the Model Editing dialog.

Expansion is a process that is employed to make the inverse easier (i.e. faster) to use when using convolution during compensated test iteration. The steps of expansion are:

1. The user edit’s the inverse transfer function matrix

 For each spectrum of the matrix, STEX performs:

 2. IFT into the time domain
 3. Perform a half-frame circular shift
 4. Append a frame of zeros
 5. FFT the frame pair back to the frequency domain

From this you can see that the spectra of the expanded inverse have a resolution equal to half that of the original inverse. Moreover, the phase has been affected by this process, a fact that was evident on older versions of STEX because the expanded inverse plot showed a distorted phase component. This phase effect is necessary for the convolution process (and is a direct result of the expansion process); however, newer versions of STEX adjust the expanded inverse plot to make the phase look more normal.

The expanded inverse is the data actually used for compensation. The inverse is only used as a source of editing to create a new expanded inverse.
Determinant

The determinant is a complex spectrum that is derived during the process of inverting the transfer function of a model. Inversion is performed at each frequency along the span of the model. The inversion is performed on a \(n \) by \(n \) matrix of complex values. In this process, a complex determinant is computed.

The determinant can be used to identify frequencies that may have difficulty being corrected during compensation test iteration.

A zero in the determinant denotes a singularity in the transfer function that cannot be inverted.
Appendix D
File Formats

STEX FILE FORMATS
Import/Export

The following formats may be used for import:

STEX 2.X (Text)
This ASCII format conforms to the standard recognized by MTS STEX version 2. A header precedes the list of numerical values. The header includes value count and units information.

Result types: Time History, Real and Complex Spectra and Shock Spectra.

ASCII No Header
This ASCII format consists of a list of values without the usual header information. The result must be simple (i.e. a time history, real or complex spectrum, or a response spectrum). A dialog will appear asking for header information (e.g. units); the type of the result is also specified.

ASCII Columns
The file represents one or more time histories. Each time history occupies a column in the file. If more than one time history is detected, a vector is also created.

Result types: Time History and Vector

469D
This format may be read and written by MTS’ digital controller software (MTS 469D).

Result types: Time History and Vector

RPC ASCII
This format is read and written by MTS RPC version 3.

Result types: Time History and Vector

RPC Binary
This format is read and written by MTS RPC version 3.

Result types: Time History and Vector
The following formats may be selected when exporting:

STEX 2.X (Text)
This ASCII format conforms to the standard recognized by MTS STEX Version 2. A header precedes the list of numerical values. The header includes value count and units information.

Results types: Time History, Real and Complex Spectra, and Shock Spectra

ASCII No Header
This ASCII format consists of a list of values without the usual header information. If the result is a vector, each component occupies a single column in the output file.

Result types: Time History, Real and Complex Spectra, Shock Spectra, and Vectors

ASCII Delta-t
This format is identical to the preceding “ASCII No Header” format except that the first line of the output file identifies the sampling interval associated with the data that follows.

Result types: Time History and Vectors

STEX Data ASCII Format
This format may be used to export all result types to an external file. The format is ASCII so the resulting files may be edited. STEX can import these files.

469D
This format may be read and written by MTS’ digital controller software (MTS 469D).

Result types: Time History and Vectors

The following types of results may be imported and exported from STEX. Examples for each follow:

1. Time History - real valued
2. Time History - word valued
3. Real Spectrum
4. Complex Spectrum
5. Response Spectrum
Example of real valued time history:

"seconds " Independent Units
0.00000000e+000 Minimum
1.00000000e+001 Maximum
EVEN_TABULATED Representation
1.00000000e-003 Resolution
10001 Values count
"g " Dependent Units
REAL_TYPE Data type
1.00000000e+000 Scale
0.00000000e+000 Offset
1024 Points per frame
0.00000000e+000
6.43990627e-003
1.31930498e-002
2.02590591e-002
(9997 values follow)

Note that Maximum = (Count-1) * Resolution

Example of word valued time history:

"seconds " Independent Units
0.000000E+00 Minimum
2.86430E+01 Maximum
EVEN_TABULATED Representation
3.33000E-04 Resolution
86016 Values count
"g " Dependent Units
WORD_TYPE Data type
1.22070E-03 Scale
2.85341E-03 Offset
4096 Points per frame
-16 0 0 0 0 0 0 0 -16 0 0
(86006 values follow)

Note that each value of the time history is computed as WORD/2048*Scale + Offset. Also, this format may be imported to STEX only. The format is used by older versions of STEX to record sampled data.
Example of real valued spectrum:

"Hz " Independent Units
0.00000000e+000 Minimum
5.00000000e+002 Maximum
EVEN_TABULATED Representation
9.76562500e-001 Resolution
512 Values count
"g " Dependent Units
REAL_TYPE Data type
1.00000000e+000 Scale
0.00000000e+000 Offset
1024 Points per frame
0.00000000e+000
9.76562500e-001
(510 values follow)

Example of complex valued spectrum:

"Hz " Independent Units
0.00000000e+000 Minimum
5.00000000e+002 Maximum
EVEN_TABULATED Representation
9.76562500e-001 Resolution
512 Values count
"g / g " Dependent Units
COMPLEX_TYPE Data type
1.00000000e+000 Complex real scale
1.00000000e+000 Complex imaginary scale
0.00000000e+000 Complex real offset
0.00000000e+000 Complex imaginary offset
1024 Points per frame
7.31775392e-001 6.51248109e-001
9.76562500e-001 1.84542005e-001
(510 complex values follow)

Note that adjacent floating point values represent the real and imaginary components of the complex value.
Example of complex valued spectrum:

```
"Hz" " Independent Units
0.00000000e+000 Minimum
5.00000000e+01 Maximum
PAIRED Representation
153 Number of pairs
"g's" " Dependent Units
REAL_TYPE Data type
1.00000000e+000 Scale
0.00000000e+000 Offset
1024 Points per frame
2.50000000e-001 7.38699804e-002
2.58867997e-001 7.64992831e-002
2.68050560e-001 7.92136816e-002
(151 value pairs follow)
```

Note that the first column represents the X axis and the second represents the Y axis. The X values must be in order and may not be zero or negative.
Simple results (i.e. time histories, spectra, and response spectra) are functions of either time or frequency. The values of these functions are measured in terms of specific units. Typical units are:

Acceleration

- g
- g’s
- m/sec^2
- M/second^2
- m/s^2
- m/s/s
- m/sec/sec
- m/second/second
- meters/sec^2
- meters/second^2
- meters/s^2
- meters/s/s
- meters/sec/sec
- meters/second/second
- gal
- in/sec^2
- in/second^2
- in/s^2
- in/s/s
- in/sec/sec
- in/second/second
- inches/sec^2
- inches/second^2
- inches/s^2
- inches/s/s
- inches/sec/sec
- inches/second/second
- ft/sec^2
- ft/second^2
- ft/s^2
- ft/s/s
- ft/sec/sec
- ft/second/second
- feet/sec^2
- feet/second^2
- feet/s^2
- feet/s/s
- feet/sec/sec
- feet/second/second
- cm/sec^2
- cm/sec/sec
- cm/s^2
Acceleration (continued)

- deg/s^2
- deg/sec^2
- deg/sec/sec
- deg/second/second
- radians/s^2
- radians/sec^2
- radians/sec/sec
- $\text{radians/second/second}$
- rad/s^2
- rad/sec^2
- rad/sec/sec
- rad/second/second
- degrees/s^2
- degrees/sec^2
- degrees/sec/sec
- $\text{degrees/second/second}$
- deg/second
- deg/second
- deg/sec
- deg/second
- deg/sec
- deg/second

Velocity

- cm/s
- cm/sec
- cm/second
- centimeters/s
- centimeters/sec
- $\text{centimeters/second}$
- mm/s
- mm/sec
- mm/second
- millimeters/s
- millimeters/sec
- $\text{millimeters/second}$
- in/s
- in/sec
- in/second
- inches/s
- inches/sec
- inches/second
- feet/s
- feet/sec
- feet/second
- ft/s
- ft/sec
- ft/second
- miles/hour
- m/s
- m/sec
- meters/second

E-2 Result Units
Displacement

mm
millimeters
cm
centimeters
m
meters
in
inches
ft
feet
yards
miles

Units are defined for both axes of a result. The independent axis units are almost always either "seconds" or "Hz"; the dependent axis units vary.